chứng minh tam giác ABC là tam giác vuông nếu AB/3=AC/4=BC/5
Đề hình học là: cho tam giác ABC vuông tại A đường cao AH. AB= 3 AC=4 BC =5. Câu a chứng minh tam giác AHB đồng dạng với tam giác ABC. Câu b tính AH. Câu c chứng minh AB^2= BH×BC
a: Xét ΔAHB vuông tạiH và ΔCAB vuông tại A có
góc B chung
=>ΔAHB đồng dạng với ΔCAB
b: AH=3*4/5=2,4cm
c: ΔABC vuông tại A có HA là đường cao
nên AB^2=BH*BC
Cho tam giác ABC có AB=3, AC=4,BC=5 A, tam giác abc là tam giác gì? B, vẽ BD là phân giác góc B(D€AC) .Trên cạnh BC lấy điểm E sao cho AB=BE.Chứng minh AD =DE C, chứng minh AE vuông góc với BD
a: Xét ΔABC có \(BC^2=AB^2+AC^2\)
nên ΔABC vuông tại A
b: Xét ΔBAD và ΔBED có
BA=BE
\(\widehat{ABD}=\widehat{EBD}\)
BD chung
Do đó: ΔBAD=ΔBED
Suy ra: AD=DE
c: Ta có: BA=BE
nên B nằm trên đường trung trực của AE(1)
Ta có: DA=DE
nên D nằm trên đường trung trực của AE(2)
Từ (1) và (2) suy ra BD là đường trung trực của AE
hay BD⊥AE
cho tam giác ABC cân tại A lấy M là trung điểm của BC cho AB=4 cm tính cạnh AC
b nếu cho góc B=60 độ thì tam giác ABC là tam giác gì giải thích
c, chứng minh tam giác AMB= tam giác AMC
chứng minh AM vuông góc BC
d, Kẻ MH vuông có AB , ( H thuộc AB) MK vuông góc AC ( k thuộc AC) . chứng minh MH = MK
mk ko biết xin lỗi bạn nha!!!
mk ko biết xin lỗi bạn nha!!!
mk ko biết xin lỗi bạn nha!!!
mk ko biết xin lỗi bạn nha!!!
Chứng minh tam giác ABC là tam giác vuông trong các trường hợp sau
AB=3.x , AC=4.x , BC=5.x
Có: \(BC^2=(5x)^2=25x^2\)
\(AB^2+AC^2=(3x)^2+(4x)^2=9x^2+16x^2=25x^2\)
\(\Rightarrow BC^2=AB^2+AC^2\)
\(\Rightarrow \Delta ABC\) vuông tại \(A\). (Định lý Py-ta-go đảo)
cho tam giác abc có ab=3 ac=4 bc=5
a, chứng minh tam giác abc vuông tại a
b, vẽ phân giác bd (d thuộc ac ) , từ d vẽ de vuông góc với bc (e thuộc bc ) chứng minh da=de
c,ed cắt ab tại f . chứng minh tam giác adf=edc rồi suy ra df>de
a) Xét ΔABC có \(BC^2=AB^2+AC^2\left(5^2=3^2+4^2\right)\)
nên ΔABC vuông tại A(Định lí Pytago đảo)
b) Xét ΔABD vuông tại A và ΔEBD vuông tại E có
BD chung
\(\widehat{ABD}=\widehat{EBD}\)(BD là tia phân giác của \(\widehat{ABE}\))
Do đó: ΔABD=ΔEBD(Cạnh huyền-góc nhọn)
Suy ra: DA=DE(hai cạnh tương ứng)
c) Xét ΔADF vuông tại A và ΔEDC vuông tại E có
DA=DE(cmt)
\(\widehat{ADF}=\widehat{EDC}\)(hai góc đối đỉnh)
Do đó: ΔADF=ΔEDC(Cạnh góc vuông-góc nhọn kề)
Suy ra: DF=DC(Hai cạnh tương ứng)
mà DC>DE(ΔDEC vuông tại E)
nên DF>DE
a)Ta có: tam giác ABC là tam giác cân
\(=>AB=AC\)
Mà \(AB=4cm\)
=>>AC=4cm
b) Nếu góc B=60 độ =>tgiác ABC là tam giác đèu(t/c)
c) Xét tam giác ABM và tgiác ACM có
AB=AC(cmt)
AM: chung
==>>tgiác ABM=tgiác ACM( ch-cgv)
d) Ta có: tam giác ABM=tgiác ACM(cmt)
=>\(\widehat{AMC}=\widehat{AMB}\)(2 góc tương ứng)
Mà: \(\widehat{AMC+}\widehat{AMC}=180^0\)
\(=>\widehat{AMC=}\widehat{AMB}=\frac{180^0}{2}=90^0\)
=> AMvuông góc vs BC
e) Xét tgiác BMH và tgiác CMK có :
BM=CM( 2 cạnh tương ứng , cmt(a))
\(\widehat{B}=\widehat{C}\)( tgiác ABC là tgiác đều)
==>>>tgiác BMH=tgiác CMK(ch-gn)
=>MH=MK( 2 cạnh tương ứng)
Câu 4: Cho tam giác ABC vuông tại A(AB < AC) phân giác góc B cắt AC tại D .Kẻ DE vuông góc BC tại E. a/Chứng minh tam giác ABD = tam giác EBD b/Chứng minh BD là đường trung trực của đoạn thẳng AB. c/ Chứng minh: AB + AC > BC + DF
a: Xét ΔBAD vuông tại A và ΔBED vuông tại E có
BD chung
góc ABD=goc EBD
=>ΔBAD=ΔBED
b: ΔBAD=ΔBED
=>BA=BE; DA=DE
=>BD là trung trực của AE
Cho tam giác ABC vuông tại A có góc ACB= 30° trên cạnh BC lấy điểm D sao cho BA=BD tia phân giác của góc B cắt AC tại I 1, chứng minh tam giác BAD đều 2, chứng minh tam giác IBC cân 3, chứng minh D là trung điểm của BC 4, cho AB=6cm tính BC, AC 5, trên tia đối của tia ID lấy diểm E sao cho IE=IC chứng minhED=AC 6, tam giác ACE là tam giác gì ? Vì sao?
Cho tam giác ABC . từ điểm m của cạnh BC Kẻ MH vuông góc với AC (H thuộc AC) và MK vuông góc với AB (K thuộc AB) Chứng minh rằng tam giác ABC là tam giác cân Nếu MH = MK
Cho ABC có AB=3;AC=4;BC=5.
a) Chứng minh tam giác ABC vuông tại A.
b) Vẽ phân giác BD (D thuộc AC),từ D vẽ DE vuông góc với BC (E thuộc BC).Chứng minh DA=DE.
c) Kẻ ED cắt AB tại F.Chứng minh chứng minh tam giác ADF= tam giác EDC rồi suy ra DF>DE