Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyen Quynh Trang
Xem chi tiết
Tô Hoài An
25 tháng 2 2020 lúc 9:13

A B C G D E

Kẻ AE là đường trung tuyến của tam giác ABC, E\(\in\)BC

Vì G là trọng tâm của tam giác ABC ( gt ) nên ta có : \(AG=\frac{2}{3}AE\Rightarrow\frac{AG}{AE}=\frac{2}{3}\)

Xét tam giác ABE có GD\(//\)AB ( G\(\in\)AE; D \(\in\)BE vì \(D\in BC\)mà \(E\in BC\)) ta có :

\(\frac{BD}{BE}=\frac{AG}{AE}\)( áp dụng định lý Ta-lét ) mà lại có :\(\frac{AG}{AE}=\frac{2}{3}\)( cmt )

\(\Rightarrow\frac{BD}{BE}=\frac{2}{3}\)

Mà AE là đường trung tuyến của tam giác ABC ( E \(\in\)BC ) nên E là trung điểm của BC

\(\Rightarrow BE=EC\)và \(BE+EC=BC\)

\(\Rightarrow\frac{BD}{BC}=\frac{BD}{BE+EC}=\frac{2}{2\cdot BE}=\frac{2}{2\cdot3}=\frac{1}{3}\)

\(\Rightarrow BD=\frac{1}{3}BC\)( ĐPCM )

Khách vãng lai đã xóa
Ngọc
Xem chi tiết
Nguyễn Lê Phước Thịnh
20 tháng 1 2021 lúc 22:41

Gọi E là trung điểm của AB

Xét ΔABC có

CE là đường trung tuyến ứng với cạnh AB(E là trung điểm của AB)

G là trọng tâm của ΔABC(Gt)

Do đó: G∈CE(Tính chất ba đường trung tuyến của tam giác)

⇒GD//BE

Xét ΔABC có

CE là đường trung tuyến ứng với cạnh AB(E là trung điểm của AB)

G là trọng tâm của ΔABC(gt)

Do đó: \(CG=\dfrac{2}{3}CE\)(Tính chất ba đường trung tuyến của tam giác)(1)

Ta có: CG+GE=CE(G nằm giữa C và E)

⇔GE=CE-EG

hay \(GE=\dfrac{1}{3}CE\)(2)

Từ (1) và (2) suy ra \(\dfrac{CG}{GE}=\dfrac{2}{1}\)

Xét ΔCEB có 

G∈CE(cmt)

D∈BC(gt)

GD//EB(cmt)

Do đó: \(\dfrac{GC}{EG}=\dfrac{DC}{BD}\)(Định lí Ta lét)

\(\dfrac{DC}{BD}=2\)

hay DC=2BD

Ta có: BD+DC=BC(D nằm giữa B và C)

⇔2BD+BD=BC

⇔3BD=BC

hay \(BD=\dfrac{1}{3}BC\)(đpcm)

Thanh Hoàng Thanh
20 tháng 1 2021 lúc 22:36

Từ điểm C kẻ đường trung tuyến CE của tam giác ABC

Ta có GD sog sog AB (gt).

 Suy ra : GD sog sog BE ( E thuộc AB)

Xét Tam giác ABC: G là trọng tâm (gt)

 Suy ra: GE/CE = 1/3 (Tc trọng tâm trong tgiác)

Xét tam giác BCE có: GD sog sog BE (cmt)

 Suy ra: BD/BC = GE/CE   (định lý Talet)

mà:  GE/CE = 1/3 (cmt)

 Suy ra: BD = 1/3 BC      (đpcm)

 

VRCT_Vy Larkyra
Xem chi tiết
Cô Hoàng Huyền
30 tháng 5 2016 lúc 14:58

A B C G D E M

Gọi M là trung điểm BC. Khi đó ta có \(AG=\frac{2}{3}AM\)

Do GD song song AB nên \(\frac{BD}{BM}=\frac{AG}{AM}=\frac{2}{3}\Rightarrow\frac{BD}{BC}=\frac{1}{3}\)

Tương tự ta có \(\frac{EC}{BC}=\frac{1}{3}\Rightarrow\frac{BD}{BC}=\frac{EC}{BC}.\)

b. Từ tỉ số \(\frac{BD}{BC}=\frac{1}{3};\frac{EC}{BC}=\frac{1}{3}\Rightarrow\frac{DE}{BC}=\frac{1}{3}\)

Vậy \(BD=DE=EC.\)

Chúc em học tốt :)

тùиɢ иɢυуễи
Xem chi tiết
Hiếu Tạ
Xem chi tiết
gfffffffh
1 tháng 3 2022 lúc 21:23

gfvfvfvfvfvfvfv555

Khách vãng lai đã xóa
Hạ Nhật
Xem chi tiết
Nguyễn Lê Phước Thịnh
16 tháng 4 2023 lúc 21:59

a: Xét ΔAHB và ΔAHC có

AB=AC
góc BAH=góc CAH

AH chung

=>ΔAHB=ΔAHC

b: Xet ΔABC có

AH,BD là trung tuyến

AH cắt BD tại G

=>G là trọng tâm

c: Xét ΔABC có

H là trung điểm của BC

HE//AC

=>E là trung điểm của AB

=>C,G,E thẳng hàng

nonnnnnn
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
10 tháng 12 2018 lúc 17:27

Út Nhỏ Jenny
Xem chi tiết