Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Minh Đức
Xem chi tiết
Nguyễn Việt Lâm
5 tháng 3 2020 lúc 23:02

\(u_n-n^2-n=u_{n-1}-\left(n-1\right)^2-\left(n-1\right)\)

Đặt \(v_n=u_n-n^2-n\Rightarrow\left\{{}\begin{matrix}v_1=0\\v_n=v_{n-1}\end{matrix}\right.\)

\(\Rightarrow v_n=v_{n-1}=v_{n-2}=...=v_1=0\)

\(\Rightarrow u_n-n^2-n=0\Rightarrow u_n=n^2+n\)

\(\Rightarrow n^2+n< 100\Rightarrow n\le9\)

Khách vãng lai đã xóa
Nguyễn Minh Đức
Xem chi tiết
Nguyễn Việt Lâm
3 tháng 3 2020 lúc 17:27

\(u_n=\frac{n+1}{n-1}u_{n-1}\)

\(u_{n-1}=\frac{n-1+1}{n-1-1}u_{n-2}=\frac{n}{n-2}u_{n-2}\)

\(u_{n-2}=\frac{n-1}{n-3}u_{n-3}\)

...

\(u_2=\frac{2+1}{2-1}u_1\)

Nhân vế với vế:

\(u_nu_{n-1}u_{n-2}...u_2=\frac{\left(n+1\right)n\left(n-1\right)...3}{\left(n-1\right)\left(n-2\right)\left(n-3\right)...1}u_{n-1}u_{n-2}u_{n-3}...u_1\)

\(\Leftrightarrow u_n=\frac{n\left(n+1\right)}{2}u_1=n\left(n+1\right)\)

\(u_n< 100\Rightarrow n^2+n< 100\)

\(\Leftrightarrow n^2+n-100< 0\Rightarrow n\le9\Rightarrow n=\left\{1;2;...;9\right\}\)

Khách vãng lai đã xóa
Nguyễn Minh Đức
Xem chi tiết
Nguyễn Việt Lâm
5 tháng 3 2020 lúc 23:06

Dãy số này sai, \(u_3\) không xác định, do đó ko thể truy hồi được từ \(u_4\) trở đi

Muốn dãy số xác định thì \(n>4\)

Khách vãng lai đã xóa
Nguyễn Minh Đức
Xem chi tiết
Nguyễn Việt Lâm
5 tháng 3 2020 lúc 22:22

Dãy là CSC với \(\left\{{}\begin{matrix}u_1=3\\d=4\end{matrix}\right.\)

\(\Rightarrow u_n=3+\left(n-1\right)4=4n-1\)

\(\Rightarrow4n-1< 100\Rightarrow n\le25\)

Khách vãng lai đã xóa
Kimian Hajan Ruventaren
Xem chi tiết
♥ Aoko ♥
Xem chi tiết
I lay my love on you
Xem chi tiết
Lữ khách cô đơn
Xem chi tiết

Ta có:

\(nu_{n+2}-\left(3n+1\right)u_{n+1}+2\left(n+1\right)u_n=3\)

\(\Leftrightarrow n\left(u_{n+2}-2u_{n+1}\right)-\left(n+1\right)\left(u_{n+1}-2u_n\right)=3\)

Đặt \(u_{n+1}-2u_n=v_n\)

\(\Rightarrow\left\{{}\begin{matrix}v_1=u_2-2u_1=-2-2.\left(-1\right)=0\\nv_{n+1}-\left(n+1\right)v_n=3\left(1\right)\end{matrix}\right.\)

Từ \(\left(1\right)\Rightarrow\dfrac{1}{n+1}v_{n+1}-\dfrac{1}{n}v_n=\dfrac{3}{n\left(n+1\right)}\)

Ta có:

\(\dfrac{1}{2}v_2-v_1=\dfrac{3}{1.2}\)

\(\dfrac{1}{3}v_3-\dfrac{1}{2}v_2=\dfrac{3}{2.3}\)

\(\dfrac{1}{4}v_4-\dfrac{1}{3}v_3=\dfrac{3}{3.4}\)

\(...\)

\(\dfrac{1}{n}v_n-\dfrac{1}{n-1}v_{n-1}=\dfrac{3}{\left(n-1\right)n}\)

\(\dfrac{1}{n+1}v_{n+1}-\dfrac{1}{n}v_n=\dfrac{3}{n\left(n+1\right)}\)

Cộng theo vế, ta có:

\(\dfrac{1}{n+1}v_{n+1}-v_1=3\left(1-\dfrac{1}{n+1}\right)\)

\(\Rightarrow v_{n+1}=3n\Leftrightarrow v_n=3\left(n-1\right)\)

\(\Rightarrow u_{n+1}-2u_n=3\left(n-1\right)\)

\(\Leftrightarrow u_{n+1}+3\left(n+1\right)=2\left(u_n+3n\right)\)

Đặt \(a_n=u_n+3n\Rightarrow\left\{{}\begin{matrix}a_1=u_1+3=2\\a_{n+1}=2a_n\end{matrix}\right.\)

\(\Rightarrow a_n=2^n\)\(\Rightarrow u_n=2^n-3n\)\(,\forall n\in N\text{*}\)

Nguyễn Thu Ngà
Xem chi tiết