Tìm số n \(\in\)\(N^{\circledast}\) sao cho \(u_n< 100\):
\(\left\{{}\begin{matrix}u_1=2\\u_n=4u_{n-1}\end{matrix}\right.\)
Tìm số \(n\in N^{\circledast}\) sao cho \(u_n< 100\) :
\(\left\{{}\begin{matrix}u_1=2\\u_n=u_{n-1}+2n\end{matrix}\right.\)
\(u_n-n^2-n=u_{n-1}-\left(n-1\right)^2-\left(n-1\right)\)
Đặt \(v_n=u_n-n^2-n\Rightarrow\left\{{}\begin{matrix}v_1=0\\v_n=v_{n-1}\end{matrix}\right.\)
\(\Rightarrow v_n=v_{n-1}=v_{n-2}=...=v_1=0\)
\(\Rightarrow u_n-n^2-n=0\Rightarrow u_n=n^2+n\)
\(\Rightarrow n^2+n< 100\Rightarrow n\le9\)
Tìm số n \(\in\)\(N^{\circledast}\) sao cho \(u_n< 100\)
\(\left\{{}\begin{matrix}u_1=2\\u_n=\frac{n+1}{n-1}.u_{n-1}\end{matrix}\right.\)
\(u_n=\frac{n+1}{n-1}u_{n-1}\)
\(u_{n-1}=\frac{n-1+1}{n-1-1}u_{n-2}=\frac{n}{n-2}u_{n-2}\)
\(u_{n-2}=\frac{n-1}{n-3}u_{n-3}\)
...
\(u_2=\frac{2+1}{2-1}u_1\)
Nhân vế với vế:
\(u_nu_{n-1}u_{n-2}...u_2=\frac{\left(n+1\right)n\left(n-1\right)...3}{\left(n-1\right)\left(n-2\right)\left(n-3\right)...1}u_{n-1}u_{n-2}u_{n-3}...u_1\)
\(\Leftrightarrow u_n=\frac{n\left(n+1\right)}{2}u_1=n\left(n+1\right)\)
\(u_n< 100\Rightarrow n^2+n< 100\)
\(\Leftrightarrow n^2+n-100< 0\Rightarrow n\le9\Rightarrow n=\left\{1;2;...;9\right\}\)
Tìm số n \(\in N^{\circledast}\) sao cho \(u_n< 100\) :
\(\left\{{}\begin{matrix}u_1=2\\u_n=\frac{n^2-6n+8}{n^2-4n+3}.u_{n-1}\end{matrix}\right.\)
Dãy số này sai, \(u_3\) không xác định, do đó ko thể truy hồi được từ \(u_4\) trở đi
Muốn dãy số xác định thì \(n>4\)
Tìm số n \(\in\)\(N^{\circledast}\) sao cho \(u_n< 100\)
\(\left\{{}\begin{matrix}u_1=3\\u_n=u_{n-1}+4\end{matrix}\right.\)
Dãy là CSC với \(\left\{{}\begin{matrix}u_1=3\\d=4\end{matrix}\right.\)
\(\Rightarrow u_n=3+\left(n-1\right)4=4n-1\)
\(\Rightarrow4n-1< 100\Rightarrow n\le25\)
Cho dãy (un) \(\left\{{}\begin{matrix}u_1=\dfrac{1}{2}\\u_n=\dfrac{\sqrt{u_{n-1}^2+4u_{n-1}}+u_{n-1}}{2}\forall n\ge2\end{matrix}\right.\)
Tinh \(\lim\limits_{n\rightarrow+\infty}\left(\dfrac{1}{u_1^2}+\dfrac{1}{u_2^2}+...+\dfrac{1}{u_n^2}\right)\)
Cho dãy số \(\left(u_n\right)\) thỏa mãn\(\left\{{}\begin{matrix}u_1=1\\u_{n+1}=\dfrac{2}{3}u_n+4,\forall n\in N,n\ge1\end{matrix}\right.\)
Tìm \(\lim\limits u_n\)
Tìm công thức số hạng tổng quát của dãy:
a) \(\left\{{}\begin{matrix}u_1=1;u_2=1\\u_n=u_{n-1}+u_{n-2}\end{matrix}\right.\)
b) \(\left\{{}\begin{matrix}u_1=1;u_2=2\\u_n-5u_{n-1}+6u_{n+2}=4\end{matrix}\right.\)
Cho dãy số \(\left(u_n\right)\) như sau
\(\left\{{}\begin{matrix}u_1=-1;u_2=-2\\nu_{n+2}-\left(3n+1\right)u_{n+1}+2\left(n+1\right)u_n=3,\forall n\in N\text{*}\end{matrix}\right.\)
Tìm CTTQ
Ta có:
\(nu_{n+2}-\left(3n+1\right)u_{n+1}+2\left(n+1\right)u_n=3\)
\(\Leftrightarrow n\left(u_{n+2}-2u_{n+1}\right)-\left(n+1\right)\left(u_{n+1}-2u_n\right)=3\)
Đặt \(u_{n+1}-2u_n=v_n\)
\(\Rightarrow\left\{{}\begin{matrix}v_1=u_2-2u_1=-2-2.\left(-1\right)=0\\nv_{n+1}-\left(n+1\right)v_n=3\left(1\right)\end{matrix}\right.\)
Từ \(\left(1\right)\Rightarrow\dfrac{1}{n+1}v_{n+1}-\dfrac{1}{n}v_n=\dfrac{3}{n\left(n+1\right)}\)
Ta có:
\(\dfrac{1}{2}v_2-v_1=\dfrac{3}{1.2}\)
\(\dfrac{1}{3}v_3-\dfrac{1}{2}v_2=\dfrac{3}{2.3}\)
\(\dfrac{1}{4}v_4-\dfrac{1}{3}v_3=\dfrac{3}{3.4}\)
\(...\)
\(\dfrac{1}{n}v_n-\dfrac{1}{n-1}v_{n-1}=\dfrac{3}{\left(n-1\right)n}\)
\(\dfrac{1}{n+1}v_{n+1}-\dfrac{1}{n}v_n=\dfrac{3}{n\left(n+1\right)}\)
Cộng theo vế, ta có:
\(\dfrac{1}{n+1}v_{n+1}-v_1=3\left(1-\dfrac{1}{n+1}\right)\)
\(\Rightarrow v_{n+1}=3n\Leftrightarrow v_n=3\left(n-1\right)\)
\(\Rightarrow u_{n+1}-2u_n=3\left(n-1\right)\)
\(\Leftrightarrow u_{n+1}+3\left(n+1\right)=2\left(u_n+3n\right)\)
Đặt \(a_n=u_n+3n\Rightarrow\left\{{}\begin{matrix}a_1=u_1+3=2\\a_{n+1}=2a_n\end{matrix}\right.\)
\(\Rightarrow a_n=2^n\)\(\Rightarrow u_n=2^n-3n\)\(,\forall n\in N\text{*}\)
\(\left\{{}\begin{matrix}u_1=2\\u_n=\dfrac{u_1+2u_2+3u_3+...+\left(n-1\right)u_{n-1}}{n\left(n^2-1\right)}\end{matrix}\right.\).tìm \(\left(u_n\right)\)