Bài 3. Tính tổng các số nguyên x thỏa mãn:
a) −30 < 𝑥 ≤ 30
b) |𝑥| < 10
Bài 3: Viết tập hợp sau bằng cách liệt kê các phần tử a) A={𝑥 ∈ 𝐵(7) ∕ 15 ≤ 𝑥 ≤ 30} b) B={𝑥 ∈ Ư(30)⁄𝑥 > 8}
a) 2+3𝑥=−15−19
b) 2𝑥−5=−17+12
c) 10−𝑥−5=−5−7−11
d) |𝑥|−3=0
e) (7−|𝑥|).(2𝑥−4)=0
f) −10−(𝑥−5)+(3−𝑥)=−8
g) 10+3(𝑥−1)=10+6𝑥
h) (𝑥+1)(𝑥−2)=0
Bài 3. Tìm các số nguyên x và y sao cho:
a) (𝑥+2)(𝑦−1)=3
b) (3−𝑥)(𝑥𝑦+5)=−1
a) 2+3𝑥=−15−19
3x= -15 - 19 -2
3x = -36
x= -12
b) 2𝑥−5=−17+12
2x = -17 + 12 + 5
2x = 0
x = 0
c) 10−𝑥−5=−5−7−11
-x = -5 - 7 - 11 - 10 + 5
-x = -28
x = 28
d) |𝑥|−3=0
|x|= 3
x = \(\pm\)3
e) (7−|𝑥|).(2𝑥−4)=0
th1 : ( 7 - | x| ) = 0
|x|= 7
x=\(\pm\)7
th2: ( 2x-4) = 0
2x = 4
x= 2
f) −10−(𝑥−5)+(3−𝑥)=−8
-10 - x + 5 + 3 - x = -8
-10 + 5 + 3 + 8 = 2x
2x= 6
x = 3
g) 10+3(𝑥−1)=10+6𝑥
10 + 3x - 3 = 10 + 6x
3x - 6x = 10 - 10 + 3
-3x = 3
x= -1
h) (𝑥+1)(𝑥−2)=0
th1: x+1= 0
x = -1
x-2=0
x=2
hok tốt!!!
Tìm các cặp số nguyên 𝑥, 𝑦 thỏa mãn phương trình |𝑥| + 2019|𝑦 − 2020| = 1
Lời giải:
$2019|y-2020|=1-|x|\leq 1$ do $|x|\geq 0$
$2019|y-2020|\geq 0$
$\Rightarrow 0\leq 2019|y-2020|\leq 1$
Mà $2019|y-2020|$ là số nguyên chia hết cho $2019$ với mọi $y$ nguyên
$\Rightarrow 2019|y-2020|=0$
$\Rightarrow y=2020$
$|x|=1-2019|y-2020|=1-0=1$
$\Rightarrow x=\pm 1$
Vậy $(x,y)=(\pm 1, 2020)$
cho biểu thức
M = 2 √ x /√ x − 3 − x + 9 √ x/ x − 9 = 2 𝑥/ 𝑥 − 3 − 𝑥 + 9 𝑥 /𝑥 − 9 và N = x + 5 √ x/ x − 25 𝐵 = 𝑥 + 5 𝑥 𝑥 − 25 với x ≥ 0 , x ≠ 9 , x ≠ 25 𝑥 ≥ 0 , 𝑥 ≠ 9 , 𝑥 ≠ 25
1, rút gọn M
2 Tìm các giá trị của x thỏa mãn M/N.(căn x + 3)=3x-5
1) Rút gọn biểu thức M: M = (2√x)/(√x - 3) - (x + 9√x)/(x - 9) = (2√x(x - 9) - (x + 9√x)(√x - 3))/(√x - 3)(x - 9) = (2x√x - 18√x - x√x + 9x + 9x - 27√x - 9√x + 27 )/(√x - 3)(x - 9) = (2x√x - 36√x + 27x)/(√x - 3)(x - 9) = (x(2√x - 36) + 27x) /(√x - 3)(x - 9) = (x(2√x - 36 + 27))/(√x - 3)(x - 9) = (x(2√x - 9))/( √x - 3)(x - 9) Do đó biểu thức M Rút gọn là: M = (x(2√x - 9))/(√x - 3)(x - 9) 2) Tìm các giá trị của x ă mãn M/N.(căn x + 3) = 3x - 5: Ta có phương trình: M/N.(căn x + 3) = 3x - 5 Đặt căn x + 3 = t, t >= 0, ta có x = t^2 - 3 Thay x = t^2 - 3 vào biểu thức M/N, ta có: M/N = [(t^2 - 3)(2√(t^2 - 3) - 9)]/[(t^2 - 3 + 5)t] = [(2(t^2 - 3) √(t^2 - 3) - 9(t^2 - 3))]/(t^3 + 2t - 3t - 6) = [2(t^2 - 3)√(t^2 - 3) - 9(t^2 - 3)]/(t(t - 1)(t + 2)) Đặt u = t^2 - 3, ta có: M/N = [2u√u - 9u]/((u + 3)(u + 2)) = [u(2√u - 9)]/((u + 3)(u + 2)) Đặt v = √u, ta có: M/N = [(v^ 2 + 3)(2v - 9)]/[((v^2 + 3)^2 - 3)(v^2 + 2)] = [(2v^3 - 18v + 6v - 54)]/[ ( (v^4 + 6v^2 + 9) - 3)(v^2 + 2)] = (2v^3 - 12v - 54)/(v^4 + 6v^2 + 6v^2 - 9v^2 + 18) = (2v^3 - 12v - 54)/(v^4 + 12v^2 + 18) Ta cần tìm các giá trị của v đối xứng phương trình M/N = 3x - 5: (2v^3 - 12v - 54)/(v^4 + 12v^2 + 18) = 3(t^2 - 3) - 5 (2v ^3 - 12v - 54)/(v^4 + 12v^2 + 18) = 3t^ 2 - 14 (2v^3 - 12v - 54) = (v^4 + 12v^2 + 18)(3t^2 - 14) Tuy nhiên, từ t = √(t^2 - 3), ta có v = √u = √(t^2 - 3) => (2(v^2)^3 - 12(v^2) - 54) = ((v^2)^4 + 12(v^2)^2 + 18) (3(v^2 - 3) - 14) => 2v^
Cho số tự nhiên 𝑥 thoả mãn: 𝑥 ∈ Ư(18) và 𝑥 ≥ 6 . Tổng tất cả các giá trị của 𝑥thoả mãn yêu cầu bài toán bằng:
33
15
27
12
Tìm số nguyên x biết:
a, −20+(𝑥−16)=−32
b, −42−7𝑥=−14
c, 26+|𝑥−15|=30
A, -20+ (x-16) = -32
-20 +x -16 = -32
-36 + x = -32
x = -32 - (-36)
x = 4
Vậy x= 4
B, -42 - 7x= -14
-7x=-42-(-14)
-7x = -28
x = -28 : (-7)
x = 4
Vậy x= 4
c, 26+|𝑥−15|=30
| x -15| = 4
TH1: x - 15= 4
x = 19
TH2: x - 15 = -4
x= 11
vậy.........
b) 𝑥∈ Ư(45), 𝑥∈ Ư(30) và x lớn nhất.
c) 𝑥∈𝐵(6),𝑥∈𝐵(8) và x nhỏ nhất khác 0.
d) 𝑥∈ Ư(50) và x>5.
\(b,x=ƯCLN\left(45,30\right)=15\\ c,x=BCNN\left(6,8\right)=24\\ d,x\in\left\{10;25;50\right\}\)
b: x=15
c: x=24
d: \(x\in\left\{10;50\right\}\)
1. \(-19\le x\le20\)
Các số x thỏa là: \(x\in\left\{-19;-18;...;20\right\}\)
Tổng các chữ số đó là:
\(\left(-19\right)+\left(-18\right)+\left(-17\right)+...+19+20\)
\(=\left(19-19\right)+\left(18-18\right)+...+\left(1-1\right)+0+20\)
\(=20\)
2. Ta có
Khẳng định A đúng
Khẳng định B đúng
Khẳng định C đúng
Khẳng định D sai ⇒ số nguyên âm bé nhất có hai chữ số là - 99
⇒ Chọn đáp án D
3. Do trong hình chữ nhật thì độ dài của hai đường chéo bằng nhau
Mà có hình chữ nhật MNPQ nên MN, NP, PQ, MQ là các cạnh còn NQ và MP là đường chéo
⇒ NQ = MP = 6(cm)
⇒ Chọn đáp án C
Bài 10. Cho biểu thức P = \(\dfrac{2\sqrt{x-3}}{\sqrt{x}+2}\) với 𝑥 ≥ 0; 𝑥 ≠ 4. Tìm các giá trị của x để P có giá trị nguyên.
Để P nguyên thì \(2\sqrt{x}-3⋮\sqrt{x}+2\)
\(\Leftrightarrow\sqrt{x}+2=7\)
hay x=25