Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
nguyenquockhang
Xem chi tiết
ILoveMath
Xem chi tiết
Nguyễn Việt Lâm
26 tháng 11 2021 lúc 21:14

ĐKXĐ:...

a. Đặt \(\left\{{}\begin{matrix}\sqrt{2x^2+4x+16}=a>0\\\sqrt{x+70}=b\ge0\end{matrix}\right.\)

\(\Rightarrow6x^2+10x-92=3a^2-2b^2\)

Pt trở thành:

\(3a^2-2b^2+ab=0\)

\(\Leftrightarrow\left(a+b\right)\left(3a-2b\right)=0\)

\(\Leftrightarrow3a=2b\)

\(\Leftrightarrow9\left(2x^2+4x+16\right)=4\left(x+70\right)\)

\(\Leftrightarrow...\)

 

Nguyễn Việt Lâm
26 tháng 11 2021 lúc 21:16

b. ĐKXĐ: ...

Đặt \(\left\{{}\begin{matrix}\sqrt{x+1}=a\ge0\\\sqrt{1-x}=b\ge0\end{matrix}\right.\)

Phương trình trở thành:

\(a^2+2+ab=3a+b\)

\(\Leftrightarrow a^2-3a+2+ab-b=0\)

\(\Leftrightarrow\left(a-1\right)\left(a-2\right)+b\left(a-1\right)=0\)

\(\Leftrightarrow\left(a-1\right)\left(a+b-2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}a=1\\a+b=2\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x+1}=1\\\sqrt{x+1}+\sqrt{1-x}=2\end{matrix}\right.\)

\(\Leftrightarrow...\)

Nhóc Cô Đơn
Xem chi tiết
Đào Trần Tuấn Anh
3 tháng 9 2019 lúc 17:26

Trả lời :

Con a giai pt vế trái rồi nhân căn bình phương cả 2 vế

Con b cũng giải pt vế phải chuyển vế rồi bình phương cả 2 vế

Chắc vậy

k bt 

Trang Phuong
Xem chi tiết
michelle holder
Xem chi tiết
Hà Nam Phan Đình
22 tháng 11 2017 lúc 21:00

ĐKXĐ: \(x\le2\)\(\Rightarrow\sqrt{2-x}\ge0\)

Ta có : \(\sqrt[3]{2x^2+6x+3}=\sqrt[3]{2\left(x+\dfrac{3}{2}\right)^2-\dfrac{3}{2}}\ge\sqrt[3]{-\dfrac{3}{2}}\)

\(\Rightarrow\sqrt{2-x}+\sqrt[3]{2x^2+6x+3}\ge\sqrt[3]{-\dfrac{3}{2}}\)

mặt khác \(-2=\sqrt[3]{\dfrac{-16}{2}}< \sqrt[3]{\dfrac{-3}{2}}\)

\(\Rightarrow VT>VP\)

vậy phương trình vô nghiệm

poppy Trang
Xem chi tiết
bach nhac lam
Xem chi tiết
tthnew
27 tháng 4 2020 lúc 18:57

f) ĐKXĐ: \(x\ge-\frac{3}{2}\)

Khi đó VT > 0 nên \(VT>0\Rightarrow\left[{}\begin{matrix}x\ge2\\x\le-3\left(L\right)\end{matrix}\right.\)

Lũy thừa 6 cả 2 vế lên PT tương đương:

\( \left( x-3 \right) \left( {x}^{11}+9\,{x}^{10}+6\,{x}^{9}-142\,{x}^{ 8}-231\,{x}^{7}+1113\,{x}^{6}+2080\,{x}^{5}-4604\,{x}^{4}-6908\,{x}^{3 }+13222\,{x}^{2}+10983\,x-15327 \right) =0\)

Cái ngoặc to vô nghiệm vì nó tương đương:

\(\left( x-2 \right) ^{11}+31\, \left( x-2 \right) ^{10}+406\, \left( x -2 \right) ^{9}+2906\, \left( x-2 \right) ^{8}+12281\, \left( x-2 \right) ^{7}+31031\, \left( x-2 \right) ^{6}+46656\, \left( x-2 \right) ^{5}+46648\, \left( x-2 \right) ^{4}+46452\, \left( x-2 \right) ^{3}+44590\, \left( x-2 \right) ^{2}+36015\,x-55223 = 0\)(vô nghiệm với mọi \(x\ge2\))

Vậy x = 3.

PS: Nghiệm đẹp thế này chắc có cách AM-Gm độc đáo nhưng mình chưa nghĩ ra

bach nhac lam
25 tháng 4 2020 lúc 11:57

@Akai Haruma, @Nguyễn Việt Lâm

giúp em vs ạ! Cần gấp ạ

em cảm ơn nhiều!

Quang Huy Điền
Xem chi tiết
Khôi Bùi
19 tháng 3 2019 lúc 22:23

Áp dụng BĐT Bunhiacopxki cho cặp số \(\sqrt{x-2};\sqrt{4-x}\), ta có :

\(VT=\sqrt{x-2}+\sqrt{4-x}\le\sqrt{\left(1+1\right)\left(x-2+4-x\right)}=2\)

\(VP=x^2-6x+11=\left(x-3\right)^2+2\ge2\)

\(\Rightarrow VT=VP=2\)

Dấu " = " xảy ra \(\Leftrightarrow x=3\)

Mai Thị Thúy
Xem chi tiết