GPT
\(\sqrt{x^2-2x+3}-\sqrt{x^2-6x+11}=\sqrt{3-x}-\sqrt{x-1}\)
gpt:\(\sqrt{3x^2+6x+4}+\sqrt{2x^2+4x+11}=\left(1-x\right)\left(x+3\right)\)
\(\sqrt{3x^2+6x+7}+\sqrt{5x^2+10x+21}=5-x^2-2x\)
\(\sqrt{x^2-x+2}+\sqrt{x^2-3x+6}=2x\)
GPT:
1, \(6x^2+10x-92+\sqrt{\left(x+70\right)\left(2x^2+4x+16\right)}=0\)
2,\(x+3+\sqrt{1-x^2}=3\sqrt{x+1}+\sqrt{1-x}\)
ĐKXĐ:...
a. Đặt \(\left\{{}\begin{matrix}\sqrt{2x^2+4x+16}=a>0\\\sqrt{x+70}=b\ge0\end{matrix}\right.\)
\(\Rightarrow6x^2+10x-92=3a^2-2b^2\)
Pt trở thành:
\(3a^2-2b^2+ab=0\)
\(\Leftrightarrow\left(a+b\right)\left(3a-2b\right)=0\)
\(\Leftrightarrow3a=2b\)
\(\Leftrightarrow9\left(2x^2+4x+16\right)=4\left(x+70\right)\)
\(\Leftrightarrow...\)
b. ĐKXĐ: ...
Đặt \(\left\{{}\begin{matrix}\sqrt{x+1}=a\ge0\\\sqrt{1-x}=b\ge0\end{matrix}\right.\)
Phương trình trở thành:
\(a^2+2+ab=3a+b\)
\(\Leftrightarrow a^2-3a+2+ab-b=0\)
\(\Leftrightarrow\left(a-1\right)\left(a-2\right)+b\left(a-1\right)=0\)
\(\Leftrightarrow\left(a-1\right)\left(a+b-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}a=1\\a+b=2\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x+1}=1\\\sqrt{x+1}+\sqrt{1-x}=2\end{matrix}\right.\)
\(\Leftrightarrow...\)
GPT
\(x^2+6x+1=\left(2x+1\right)\sqrt{x^2+2x+3}\)3
\(\sqrt{3x-2}-\sqrt{x-1}=2x^2-x-3\)
Trả lời :
Con a giai pt vế trái rồi nhân căn bình phương cả 2 vế
Con b cũng giải pt vế phải chuyển vế rồi bình phương cả 2 vế
Chắc vậy
k bt
GPT: \(2x\sqrt{8x+1}+\sqrt{x^2+8}=6x\sqrt{x}+3\)
gpt \(\sqrt{2-x}+\sqrt[3]{2x^2+6x+3}=-2\)
ĐKXĐ: \(x\le2\)\(\Rightarrow\sqrt{2-x}\ge0\)
Ta có : \(\sqrt[3]{2x^2+6x+3}=\sqrt[3]{2\left(x+\dfrac{3}{2}\right)^2-\dfrac{3}{2}}\ge\sqrt[3]{-\dfrac{3}{2}}\)
\(\Rightarrow\sqrt{2-x}+\sqrt[3]{2x^2+6x+3}\ge\sqrt[3]{-\dfrac{3}{2}}\)
mặt khác \(-2=\sqrt[3]{\dfrac{-16}{2}}< \sqrt[3]{\dfrac{-3}{2}}\)
\(\Rightarrow VT>VP\)
vậy phương trình vô nghiệm
gpt:
\(a,\sqrt{2x+4}-2\sqrt{2-x}=\dfrac{6x-4}{\sqrt{x^2+4}}\)
b) \(\sqrt{\dfrac{6}{3-x}}+\sqrt{\dfrac{8}{2-x}}=6\)
Gpt: a) \(\sqrt[4]{3\left(x+5\right)}-\sqrt[4]{11-x}=\sqrt[4]{13+x}-\sqrt[4]{3\left(3-x\right)}\)
b) \(\frac{1+2\sqrt{x}-x\sqrt{x}}{3-x-\sqrt{2-x}}=2\left(\frac{1+x\sqrt{x}}{1+x}\right)\) c) \(\sqrt{x+1}+\frac{4\left(\sqrt{x+1}+\sqrt{x-2}\right)}{3\left(\sqrt{x-2}+1\right)^2}=3\)
d) \(\sqrt{\frac{x-2}{x+1}}+\frac{x+2}{\left(\sqrt{x+2}+\sqrt{x-2}\right)^2}=1\) e) \(2x+1+x\sqrt{x^2+2}+\left(x+1\right)\sqrt{x^2+2x+2}=0\)
f) \(\sqrt{2x+3}\cdot\sqrt[3]{x+5}=x^2+x-6\)
f) ĐKXĐ: \(x\ge-\frac{3}{2}\)
Khi đó VT > 0 nên \(VT>0\Rightarrow\left[{}\begin{matrix}x\ge2\\x\le-3\left(L\right)\end{matrix}\right.\)
Lũy thừa 6 cả 2 vế lên PT tương đương:
\( \left( x-3 \right) \left( {x}^{11}+9\,{x}^{10}+6\,{x}^{9}-142\,{x}^{ 8}-231\,{x}^{7}+1113\,{x}^{6}+2080\,{x}^{5}-4604\,{x}^{4}-6908\,{x}^{3 }+13222\,{x}^{2}+10983\,x-15327 \right) =0\)
Cái ngoặc to vô nghiệm vì nó tương đương:
\(\left( x-2 \right) ^{11}+31\, \left( x-2 \right) ^{10}+406\, \left( x -2 \right) ^{9}+2906\, \left( x-2 \right) ^{8}+12281\, \left( x-2 \right) ^{7}+31031\, \left( x-2 \right) ^{6}+46656\, \left( x-2 \right) ^{5}+46648\, \left( x-2 \right) ^{4}+46452\, \left( x-2 \right) ^{3}+44590\, \left( x-2 \right) ^{2}+36015\,x-55223 = 0\)(vô nghiệm với mọi \(x\ge2\))
Vậy x = 3.
PS: Nghiệm đẹp thế này chắc có cách AM-Gm độc đáo nhưng mình chưa nghĩ ra
@Akai Haruma, @Nguyễn Việt Lâm
giúp em vs ạ! Cần gấp ạ
em cảm ơn nhiều!
GPT :
a) \(\sqrt{x-2}+\sqrt{4-x}=x^2-6x+11\)
b) \(\sqrt{x^2+x-1}+\sqrt{-x^2+x+1}=x^2-x+2\)
Áp dụng BĐT Bunhiacopxki cho cặp số \(\sqrt{x-2};\sqrt{4-x}\), ta có :
\(VT=\sqrt{x-2}+\sqrt{4-x}\le\sqrt{\left(1+1\right)\left(x-2+4-x\right)}=2\)
\(VP=x^2-6x+11=\left(x-3\right)^2+2\ge2\)
\(\Rightarrow VT=VP=2\)
Dấu " = " xảy ra \(\Leftrightarrow x=3\)
giải phương trình :
a, \(\sqrt{x+1}+x+3=\sqrt{1-x}+3\sqrt{1-x^2}\)
b,\(\left(2x-3\right)\sqrt{3+x}+2x\sqrt{3-x}=6x-8+\sqrt{9-x^2}\)
c, \(2x^2-5x+22=5\sqrt{x^3-11x +20}\)
d, \(x^3-3x^2+2\sqrt{\left(x+2\right)^3}=6x\)