Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Thanh Liêm
Xem chi tiết
Huỳnh Ngọc Ngân
Xem chi tiết

a) \(x^4-2x^3+4x^2-3x+2=0\)

\(\Leftrightarrow x^4-2x^3+x^2+3x^2-3x+2=0\)

\(\Leftrightarrow\left(x^4-2x^3+x^2\right)+3\left(x^2-x+\frac{1}{4}\right)+\frac{5}{4}=0\)

\(\Leftrightarrow\left(x^2-x\right)^2=3\left(x-\frac{1}{2}\right)^2+\frac{5}{4}=0\)

 Vì (x2 -x )\(\ge0\)với mọi x

\(\Rightarrow\left(x^2-x\right)^2+3\left(x-\frac{1}{2}\right)^2+\frac{5}{4}>0\)với mọi x

=> Phương trình trên vô nghiệm - đpcm

Khách vãng lai đã xóa

b) Ta có

x6+x5+x4+x3+x2+x+1=0

Nhận thấy x = 1 không là nghiệm của phương trình. Nhân cả hai vế của phương trình với x-1 được :

(x−1)(x6+x5+x4+x3+x2+x+1)=0

⇔x7−1=0

⇔x7=1

⇔x=1

(vô lí)

Điều vô lí chứng tỏ phương trình vô nghiệm.

Khách vãng lai đã xóa
Phạm Thị xuân Quỳnh
Xem chi tiết
Nguyễn Thị Huyền My
10 tháng 2 2019 lúc 16:08

1. x\(^4\)-x\(^3\)+2x\(^2\)-x+1=0

\(\Leftrightarrow\)(x^4-x^3+x^2) +(x^2-x+1)=0

\(\Leftrightarrow\)x^2(x^2-x+1) +(x^2-x+1)=0

\(\Leftrightarrow\)(x^2-x+1)(x^2+1)=0

\(\Leftrightarrow\)\([\)(x^2-x+1/4)+3/4\(]\)(x^2+1)=0

\(\Leftrightarrow\)\([\)(x-1/2)\(^2\)+3/4\(]\)(x^2+1)=0  

VÌ (x-1/2)\(^2\)+3/4>0\(\forall\)x

x^2+1>0\(\forall\)x

\(\Rightarrow\)Phương trình đã cho vô nghiệm

Nguyễn Tấn Phát
10 tháng 2 2019 lúc 16:28

1)x^4 - x^3 + 2x^2 - x + 1 = 0

  (x^4 + 2x^2 +1) - (x^3+x)= 0

   x^4 + 2x^2 + 1               = x^3 - x

     (x^2 + 1)^2                  = x(x^2 + 1)

(x^2+1)(x^2+1)                =  x(x^2 + 1)

(x^2+1)(x^2+1)                =  x(x^2 + 1)

               x^2+1                =  x (vô lí)

==> PT vô nghiệm

Nguyễn Tấn Phát
11 tháng 2 2019 lúc 9:05

2)\(\Leftrightarrow x^4-x^3-x^3+2x^2-x-2x+1+1=-2x^2\)(cộng cả hai vế cho -2x2)

  \(\Leftrightarrow x^4-x^3-x^3+x^2+x^2-x-2x+1+1=-2x^2\)

  \(\Leftrightarrow\left(x^4-x^3\right)-\left(x^3-x^2\right)+\left(x^2-2x+1\right)-\left(x-1\right)=-2x^2\)

  \(\Leftrightarrow x^3\left(x-1\right)-x^2\left(x-1\right)+\left(x-1\right)^2-\left(x-1\right)=-2x^2\)

  \(\Leftrightarrow\left(x-1\right)\left(x^3-x^2+x-1-1\right)=-2x^2\)

  \(\Leftrightarrow\left(x-1\right)\left(\left(x^3-x^2\right)+\left(x-1\right)-1\right)=-2x^2\)

  \(\Leftrightarrow\left(x-1\right)\left(x^2\left(x-1\right)+\left(x-1\right)-1\right)=-2x^2\)

  \(\Leftrightarrow\left(x-1\right)\left(\left(x-1\right)\left(x^2+1\right)-1\right)=-2x^2\)

  \(\Leftrightarrow\left(x-1\right)^2\left(x^2+1\right)-\left(x-1\right)=-2x^2\)

  \(\Leftrightarrow\left(x-1\right)^2\left(x^2+1\right)=-2x^2+x-1\)

\(\mp\)Xét \(\left(x-1\right)^2\left(x^2+1\right)\)có:

(x-1)2 \(\ge\)0 với mọi x

(x2+1) \(\ge\)0 với mọi x

\(\Rightarrow\left(x-1\right)^2\left(x^2+1\right)\)\(>0\)với mọi x   (1)

\(\mp\)xét \(-2x^2+x-1\)có:

\(-2x^2\le0\)với \(x\in Z\)

\(\Rightarrow-2x^2+x\le0\)

\(\Rightarrow-2x^2+x-1< 0\)với \(x\in Z\left(2\right)\)

Từ (1) và (2) \(\Rightarrow\)PT VÔ NGHIỆM

Phương Dung
Xem chi tiết
Trần Đức Thắng
13 tháng 8 2015 lúc 8:47

Bài 1 :

a) x^2 + 5x = 0 

 x(x+ 5 ) = 0 

=> x = 0 hoặc x + 5 = 0 

=> x = 0 và x = -5 

b tương tự 

c ) 3x^2 - 5x - 8 = 0 

3x^2 - 8x + 3x - 8 = 0 

=>  x ( 3x - 8 ) + 3x - 8 = 0 

=> ( x+ 1 )( 3x - 8 ) = 0 

=> x+ 1 = 0 hoặc 3x - 8 = 0 

=> x = -1 hoặc x = 8/3

(+) d tương tự 

 

Bài 2 : 

 x^2 + 2x + 7 = x^2 + x + x + 1 + 6 = x(x+1)+ x +1  + 6 = ( x+ 1 )(x+1) +6  = ( x+ 1 )^2 + 6 

Vì ( x+ 1 )^2 >=0 => ( x+ 1 )^2 + 6 > 0 

=> vô nghiệm 

Quynh Anh Quach
Xem chi tiết
lewandoski
Xem chi tiết
l lol
Xem chi tiết
Hquynh
7 tháng 1 2023 lúc 20:44

\(2x-3=2\left(x-3\right)\\ \Leftrightarrow2x-3=2x-6\\ \Leftrightarrow-3=-6\left(voli\right)\)

\(\Rightarrow\) phương trình vô nghiệm

\(x^2-4x+6=0 \)

Ta có

\(x^2-4x+6=x^2-2.2.x+2^2+2=\left(x-2\right)^2+2\ge2\forall x\)

\(=>x^2-4x+6>0\)

\(\Rightarrow\) phương trình vô no 

Ngô Hải Nam
7 tháng 1 2023 lúc 20:43

\(2x-1=2\left(x-3\right)\\ < =>2x-1=2x-6\\ < =>2x-2x=-6+1\\ < =>0x=-5\left(voli\right)\)

\(x^2-4x+6=0\\ < =>x^2-4x+4+2=0\\ < =>\left(x-2\right)^2+2=0\left(voli\right)\)

Hssvvd
Xem chi tiết
Victor Hugo
6 tháng 3 2020 lúc 21:23

B1.a/ (x-2)(x^2+2x+2)

     b/ (x+1)(x+5)(x+2)

     c/ (x+1)(x^2+2x+4)

B2.

Khách vãng lai đã xóa
Edogawa Conan
6 tháng 3 2020 lúc 21:24

1a) x3 - 2x - 4 = 0

<=> (x3 - 4x) + (2x - 4) = 0

<=> x(x2 - 4) + 2(x - 2) = 0

<=> x(x - 2)(x + 2) + 2(x - 2) = 0

<=> (x - 2)(x2 + 2x + 2) = 0

<=> x - 2 = 0 (vì x2 + 2x + 2 \(\ne\)0)

<=> x = 2

Vậy S = {2}

b) x3 + 8x2 + 17x + 10 = 0

<=> (x3 + 5x2) + (3x2 + 15x) + (2x + 10) = 0

<=> x2(x + 5) + 3x(x + 5) + 2(x + 5) = 0

<=> (x2 + 3x + 2)(x + 5) = 0

<=> (x2 + x + 2x + 2)(x + 5) = 0

<=> (x + 1)(x + 2)(x + 5) = 0

<=> x + 1 = 0 hoặc x + 2 = 0 hoặc x + 5 = 0

<=> x = -1 hoặc x = -2 hoặc x = -5

Vậy S = {-1; -2; -5}

c) x3 + 3x2 + 6x + 4 = 0

<=> (x3 + x2) + (2x2 + 2x) + (4x + 4) = 0

<=> x2(x + 1) + 2x(x + 1) + 4(x + 2) = 0

<=> (x2 + 2x + 4)(x + 2) = 0

<=> x + 2 = 0

<=> x = -2

Vậy S = {-2}

Khách vãng lai đã xóa
#Biinz_Tổng
Xem chi tiết
Nguyễn Tấn Phát
22 tháng 1 2020 lúc 12:45

\(\text{CM vô nghiệm}\)
\(\text{a) }\left(x-2\right)^3=\left(x-2\right).\left(x^2+2x+4\right)-6\left(x-1\right)^2\)
\(\Leftrightarrow x^3-6x^2+12x-8=x^3-8-6\left(x^2-2x+1\right)\)
\(\Leftrightarrow x^3-6x^2+12x-8=x^3-8-6x^2+12x-6\)
\(\Leftrightarrow x^3-6x^2+12x-x^3+6x-12x=-8+8-6\)
\(\Leftrightarrow0x=-6\text{ (vô lí)}\)
\(\text{Vậy }S=\varnothing\)

\(\text{b) }4x^2-12x+10=0\)
\(\Leftrightarrow\left(4x^2-12x+9\right)+1=0\)
\(\Leftrightarrow\left(2x-3\right)^2+1=0\)
\(\Leftrightarrow\left(2x-3\right)^2=-1\text{ (vô lí)}\)
\(\text{Vậy }S=\varnothing\)

\(\text{CM vô số nghiệm}\)
       \(\left(x+1\right)\left(x^2-x+1\right)=\left(x+1\right)^3-3x\left(x+1\right)\)
\(\Leftrightarrow\left(x+1\right)\left(x^2-x+1\right)=\left(x+1\right)\left[\left(x+1\right)^2-3x\right]\)
\(\Leftrightarrow\left(x+1\right)\left(x^2-x+1\right)=\left(x+1\right)\left(x^2+2x+1-3x\right)\)
\(\Leftrightarrow\left(x+1\right)\left(x^2-x+1\right)=\left(x+1\right)\left(x^2-x+1\right)\text{ (luôn luôn đúng)}\)
\(\text{Vậy }S\inℝ\)

Khách vãng lai đã xóa