CM : x^2 - 2x^3 + 4x^2 -3x + 2 vô nghiệm
Tìm nghiệm các đa thức:
a) -3x^3+5x^2-2x
b) -1/2x^4+1/8x^2
c)-1/3(3x+1)(5-2x)(2013x-2012)
d)3x^2-x-10
e)x^2-4x+3
cm đa thức ko có nghiệm
a)x^2+x-1
b)2013x^2012+1
c)4x^2-4x+3
CMR: các PT sau vô nghiệm
a) x^4 -2x^3 +4x^2 -3x +2 = 0
b) x^6 + x^5 + x^4 + x^3 +x^2 + x + 1=0
a) \(x^4-2x^3+4x^2-3x+2=0\)
\(\Leftrightarrow x^4-2x^3+x^2+3x^2-3x+2=0\)
\(\Leftrightarrow\left(x^4-2x^3+x^2\right)+3\left(x^2-x+\frac{1}{4}\right)+\frac{5}{4}=0\)
\(\Leftrightarrow\left(x^2-x\right)^2=3\left(x-\frac{1}{2}\right)^2+\frac{5}{4}=0\)
Vì (x2 -x )2 \(\ge0\)với mọi x
\(\Rightarrow\left(x^2-x\right)^2+3\left(x-\frac{1}{2}\right)^2+\frac{5}{4}>0\)với mọi x
=> Phương trình trên vô nghiệm - đpcm
b) Ta có
x6+x5+x4+x3+x2+x+1=0
Nhận thấy x = 1 không là nghiệm của phương trình. Nhân cả hai vế của phương trình với x-1 được :
(x−1)(x6+x5+x4+x3+x2+x+1)=0
⇔x7−1=0
⇔x7=1
⇔x=1
(vô lí)
Điều vô lí chứng tỏ phương trình vô nghiệm.
Chứng minh phương trình vô nghiệm
1. x4-x3+2x2-x+1=0
2.x4-2x3+4x2-3x+2=0
1. x\(^4\)-x\(^3\)+2x\(^2\)-x+1=0
\(\Leftrightarrow\)(x^4-x^3+x^2) +(x^2-x+1)=0
\(\Leftrightarrow\)x^2(x^2-x+1) +(x^2-x+1)=0
\(\Leftrightarrow\)(x^2-x+1)(x^2+1)=0
\(\Leftrightarrow\)\([\)(x^2-x+1/4)+3/4\(]\)(x^2+1)=0
\(\Leftrightarrow\)\([\)(x-1/2)\(^2\)+3/4\(]\)(x^2+1)=0
VÌ (x-1/2)\(^2\)+3/4>0\(\forall\)x
x^2+1>0\(\forall\)x
\(\Rightarrow\)Phương trình đã cho vô nghiệm
1)x^4 - x^3 + 2x^2 - x + 1 = 0
(x^4 + 2x^2 +1) - (x^3+x)= 0
x^4 + 2x^2 + 1 = x^3 - x
(x^2 + 1)^2 = x(x^2 + 1)
(x^2+1)(x^2+1) = x(x^2 + 1)
(x^2+1)(x^2+1) = x(x^2 + 1)
x^2+1 = x (vô lí)
==> PT vô nghiệm
2)\(\Leftrightarrow x^4-x^3-x^3+2x^2-x-2x+1+1=-2x^2\)(cộng cả hai vế cho -2x2)
\(\Leftrightarrow x^4-x^3-x^3+x^2+x^2-x-2x+1+1=-2x^2\)
\(\Leftrightarrow\left(x^4-x^3\right)-\left(x^3-x^2\right)+\left(x^2-2x+1\right)-\left(x-1\right)=-2x^2\)
\(\Leftrightarrow x^3\left(x-1\right)-x^2\left(x-1\right)+\left(x-1\right)^2-\left(x-1\right)=-2x^2\)
\(\Leftrightarrow\left(x-1\right)\left(x^3-x^2+x-1-1\right)=-2x^2\)
\(\Leftrightarrow\left(x-1\right)\left(\left(x^3-x^2\right)+\left(x-1\right)-1\right)=-2x^2\)
\(\Leftrightarrow\left(x-1\right)\left(x^2\left(x-1\right)+\left(x-1\right)-1\right)=-2x^2\)
\(\Leftrightarrow\left(x-1\right)\left(\left(x-1\right)\left(x^2+1\right)-1\right)=-2x^2\)
\(\Leftrightarrow\left(x-1\right)^2\left(x^2+1\right)-\left(x-1\right)=-2x^2\)
\(\Leftrightarrow\left(x-1\right)^2\left(x^2+1\right)=-2x^2+x-1\)
\(\mp\)Xét \(\left(x-1\right)^2\left(x^2+1\right)\)có:
(x-1)2 \(\ge\)0 với mọi x
(x2+1) \(\ge\)0 với mọi x
\(\Rightarrow\left(x-1\right)^2\left(x^2+1\right)\)\(>0\)với mọi x (1)
\(\mp\)xét \(-2x^2+x-1\)có:
\(-2x^2\le0\)với \(x\in Z\)
\(\Rightarrow-2x^2+x\le0\)
\(\Rightarrow-2x^2+x-1< 0\)với \(x\in Z\left(2\right)\)
Từ (1) và (2) \(\Rightarrow\)PT VÔ NGHIỆM
Tìm nghiệm:
x2+5x
x2-6x
3x2-5x-8
4x3+2x2-6x
C/m vô nghiệm :
x2+2x+7
Bài 1 :
a) x^2 + 5x = 0
x(x+ 5 ) = 0
=> x = 0 hoặc x + 5 = 0
=> x = 0 và x = -5
b tương tự
c ) 3x^2 - 5x - 8 = 0
3x^2 - 8x + 3x - 8 = 0
=> x ( 3x - 8 ) + 3x - 8 = 0
=> ( x+ 1 )( 3x - 8 ) = 0
=> x+ 1 = 0 hoặc 3x - 8 = 0
=> x = -1 hoặc x = 8/3
(+) d tương tự
Bài 2 :
x^2 + 2x + 7 = x^2 + x + x + 1 + 6 = x(x+1)+ x +1 + 6 = ( x+ 1 )(x+1) +6 = ( x+ 1 )^2 + 6
Vì ( x+ 1 )^2 >=0 => ( x+ 1 )^2 + 6 > 0
=> vô nghiệm
CM f(x)= -4x^4 + 3x^3 - 2x^2 + x - 1 không có nghiệm nguyên
CMR: Đa thức A(x)=-4x4+3x3-2x2+x-16 vô nghiệm
2x-3= 2(x-3)
x^2 -4x+6=0
chứng tỏ vô nghiệm
\(2x-3=2\left(x-3\right)\\ \Leftrightarrow2x-3=2x-6\\ \Leftrightarrow-3=-6\left(voli\right)\)
\(\Rightarrow\) phương trình vô nghiệm
\(x^2-4x+6=0 \)
Ta có
\(x^2-4x+6=x^2-2.2.x+2^2+2=\left(x-2\right)^2+2\ge2\forall x\)
\(=>x^2-4x+6>0\)
\(\Rightarrow\) phương trình vô no
\(2x-1=2\left(x-3\right)\\ < =>2x-1=2x-6\\ < =>2x-2x=-6+1\\ < =>0x=-5\left(voli\right)\)
\(x^2-4x+6=0\\ < =>x^2-4x+4+2=0\\ < =>\left(x-2\right)^2+2=0\left(voli\right)\)
HELP ME
Bài 1:Giải các phương trình sau:
A) x^3-2x-4=0
B)x^3+8x^2+17x+10=0
C)x^3+3x^2+6x+4=0
Bài 2: CM các PT sau vô nghiệm
A) x^4-x^3+x^2-x+1=0
B) x^4-2x^3+4x^2-3x+2
B1.a/ (x-2)(x^2+2x+2)
b/ (x+1)(x+5)(x+2)
c/ (x+1)(x^2+2x+4)
B2.
1a) x3 - 2x - 4 = 0
<=> (x3 - 4x) + (2x - 4) = 0
<=> x(x2 - 4) + 2(x - 2) = 0
<=> x(x - 2)(x + 2) + 2(x - 2) = 0
<=> (x - 2)(x2 + 2x + 2) = 0
<=> x - 2 = 0 (vì x2 + 2x + 2 \(\ne\)0)
<=> x = 2
Vậy S = {2}
b) x3 + 8x2 + 17x + 10 = 0
<=> (x3 + 5x2) + (3x2 + 15x) + (2x + 10) = 0
<=> x2(x + 5) + 3x(x + 5) + 2(x + 5) = 0
<=> (x2 + 3x + 2)(x + 5) = 0
<=> (x2 + x + 2x + 2)(x + 5) = 0
<=> (x + 1)(x + 2)(x + 5) = 0
<=> x + 1 = 0 hoặc x + 2 = 0 hoặc x + 5 = 0
<=> x = -1 hoặc x = -2 hoặc x = -5
Vậy S = {-1; -2; -5}
c) x3 + 3x2 + 6x + 4 = 0
<=> (x3 + x2) + (2x2 + 2x) + (4x + 4) = 0
<=> x2(x + 1) + 2x(x + 1) + 4(x + 2) = 0
<=> (x2 + 2x + 4)(x + 2) = 0
<=> x + 2 = 0
<=> x = -2
Vậy S = {-2}
Chứng minh các phương trình sau vô nghiệm:
a) (x-2)3=(x-2).(x2+2x+4)-6.(x-1)2
b)4x2-12x+10=0
Chứng minh các phương trình sau vô số nghiệm:
(x+1).(x2-x-1)=(x+1)3-3x.(x+1)
\(\text{CM vô nghiệm}\)
\(\text{a) }\left(x-2\right)^3=\left(x-2\right).\left(x^2+2x+4\right)-6\left(x-1\right)^2\)
\(\Leftrightarrow x^3-6x^2+12x-8=x^3-8-6\left(x^2-2x+1\right)\)
\(\Leftrightarrow x^3-6x^2+12x-8=x^3-8-6x^2+12x-6\)
\(\Leftrightarrow x^3-6x^2+12x-x^3+6x-12x=-8+8-6\)
\(\Leftrightarrow0x=-6\text{ (vô lí)}\)
\(\text{Vậy }S=\varnothing\)
\(\text{b) }4x^2-12x+10=0\)
\(\Leftrightarrow\left(4x^2-12x+9\right)+1=0\)
\(\Leftrightarrow\left(2x-3\right)^2+1=0\)
\(\Leftrightarrow\left(2x-3\right)^2=-1\text{ (vô lí)}\)
\(\text{Vậy }S=\varnothing\)
\(\text{CM vô số nghiệm}\)
\(\left(x+1\right)\left(x^2-x+1\right)=\left(x+1\right)^3-3x\left(x+1\right)\)
\(\Leftrightarrow\left(x+1\right)\left(x^2-x+1\right)=\left(x+1\right)\left[\left(x+1\right)^2-3x\right]\)
\(\Leftrightarrow\left(x+1\right)\left(x^2-x+1\right)=\left(x+1\right)\left(x^2+2x+1-3x\right)\)
\(\Leftrightarrow\left(x+1\right)\left(x^2-x+1\right)=\left(x+1\right)\left(x^2-x+1\right)\text{ (luôn luôn đúng)}\)
\(\text{Vậy }S\inℝ\)