\(2x-3=2\left(x-3\right)\\ \Leftrightarrow2x-3=2x-6\\ \Leftrightarrow-3=-6\left(voli\right)\)
\(\Rightarrow\) phương trình vô nghiệm
\(x^2-4x+6=0 \)
Ta có
\(x^2-4x+6=x^2-2.2.x+2^2+2=\left(x-2\right)^2+2\ge2\forall x\)
\(=>x^2-4x+6>0\)
\(\Rightarrow\) phương trình vô no
\(2x-1=2\left(x-3\right)\\ < =>2x-1=2x-6\\ < =>2x-2x=-6+1\\ < =>0x=-5\left(voli\right)\)
\(x^2-4x+6=0\\ < =>x^2-4x+4+2=0\\ < =>\left(x-2\right)^2+2=0\left(voli\right)\)