Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
nguyen thi mai huong
Xem chi tiết
Chu Công Đức
28 tháng 2 2020 lúc 8:55

\(\Delta=\left(-5\right)^2-4.1.\left(-4500\right)=25+18000=18025>0\)

\(\Rightarrow\)Phương trình có 2 nghiệm phân biệt là:

\(x_1=\frac{-5-\sqrt{18025}}{2}=\frac{-5-5\sqrt{721}}{2}\)và \(x_2=\frac{-5+\sqrt{18025}}{2}=\frac{-5+5\sqrt{721}}{2}\)

Vậy \(x=\frac{-5\pm5\sqrt{721}}{2}\)

Khách vãng lai đã xóa
╰❥ ครtг๏ภ๏๓เค ✾
28 tháng 2 2020 lúc 8:56

1.

The first term is,  x2  its coefficient is  1 .
The middle term is,  +5x  its coefficient is  5 .
The last term, "the constant", is  -4500 

Step-1 : Multiply the coefficient of the first term by the constant   1 • -4500 = -4500 

Step-2 : Find two factors of  -4500  whose sum equals the coefficient of the middle term, which is   5 .

     -4500   +   1   =   -4499 
     -2250   +   2   =   -2248 
     -1500   +   3   =   -1497 
     -1125   +   4   =   -1121 
     -900   +   5   =   -895 
     -750   +   6   =   -744 


For tidiness, printing of 30 lines which failed to find two such factors, was suppressed

Observation : No two such factors can be found !!
Conclusion : Trinomial can not be factored

2.2.1      Find the Vertex of   y = x2+5x-4500

Parabolas have a highest or a lowest point called the Vertex .   Our parabola opens up and accordingly has a lowest point (AKA absolute minimum) .   We know this even before plotting  "y"  because the coefficient of the first term, 1 , is positive (greater than zero). 

 Each parabola has a veral line of symmetry that passes through its vertex. Because of this symmetry, the line of symmetry would, for example, pass through the midpoint of the two  x -intercepts (roots or solutions) of the parabola. That is, if the parabola has indeed two real solutions. 

 Parabolas can model many real life situations, such as the height above ground, of an object thrown upward, after some period of time. The vertex of the parabola can provide us with information, such as the maximum height that object, thrown upwards, can reach. For this reason we want to be able to find the coordinates of the vertex. 

 For any parabola,Ax2+Bx+C,the  x -coordinate of the vertex is given by  -B/(2A) . In our case the  x  coordinate is  -2.5000  

 Plugging into the parabola formula  -2.5000  for  x  we can calculate the  y -coordinate : 
  y = 1.0 * -2.50 * -2.50 + 5.0 * -2.50 - 4500.0
or   y = -4506.250

3.

Root plot for :  y = x2+5x-4500
Axis of Symmetry (dashed)  {x}={-2.50} 
Vertex at  {x,y} = {-2.50,-4506.25} 
 x -Intercepts (Roots) :
Root 1 at  {x,y} = {-69.63, 0.00} 
Root 2 at  {x,y} = {64.63, 0.00} 

Solve Quadra Equation by Completing The Square

 2.2     Solving   x2+5x-4500 = 0 by Completing The Square .

 Add  4500  to both side of the equation :
   x2+5x = 4500

Now the clever bit: Take the coefficient of  x , which is  5 , divide by two, giving  5/2 , and finally square it giving  25/4 

Add  25/4  to both sides of the equation :
  On the right hand side we have :
   4500  +  25/4    or,  (4500/1)+(25/4) 
  The common denominator of the two fractions is  4   Adding  (18000/4)+(25/4)  gives  18025/4 
  So adding to both sides we finally get :
   x2+5x+(25/4) = 18025/4

Adding  25/4  has completed the left hand side into a perfect square :
   x2+5x+(25/4)  =
   (x+(5/2)) • (x+(5/2))  =
  (x+(5/2))2
Things which are equal to the same thing are also equal to one another. Since
   x2+5x+(25/4) = 18025/4 and
   x2+5x+(25/4) = (x+(5/2))2
then, according to the law of transitivity,
   (x+(5/2))2 = 18025/4

We'll refer to this Equation as  Eq. #2.2.1  

The Square Root Principle says that When two things are equal, their square roots are equal.

Note that the square root of
   (x+(5/2))2   is
   (x+(5/2))2/2 =
  (x+(5/2))1 =
   x+(5/2)

Now, applying the Square Root Principle to  Eq. #2.2.1  we get:
   x+(5/2) = √ 18025/4

Subtract  5/2  from both sides to obtain:
   x = -5/2 + √ 18025/4

Since a square root has two values, one positive and the other negative
   x2 + 5x - 4500 = 0
   has two solutions:
  x = -5/2 + √ 18025/4
   or
  x = -5/2 - √ 18025/4

Note that  √ 18025/4 can be written as
  √ 18025  / √ 4   which is √ 18025  / 2

4. 2.3     Solving    x2+5x-4500 = 0 by the Quadra Formula .

 According to the Quadra Formula,  x  , the solution for   Ax2+Bx+C  = 0  , where  A, B  and  C  are numbers, often called coefficients, is given by :
                                     
            - B  ±  √ B2-4AC
  x =   ————————
                      2A

  In our case,  A   =     1
                      B   =    5
                      C   =  -4500

Accordingly,  B2  -  4AC   =
                     25 - (-18000) =
                     18025

Applying the quadra formula :

               -5 ± √ 18025
   x  =    ———————
                        2

Can  √ 18025 be simplified ?

Yes!   The prime factorization of  18025   is
   5•5•7•103 
To be able to remove something from under the radical, there have to be  2  instances of it (because we are taking a square i.e. second root).

√ 18025   =  √ 5•5•7•103   =
                ±  5 • √ 721

  √ 721   , rounded to 4 decimal digits, is  26.8514
 So now we are looking at:
           x  =  ( -5 ± 5 •  26.851 ) / 2

Two real solutions:

 x =(-5+√18025)/2=(-5+5√ 721 )/2= 64.629

or:

 x =(-5-√18025)/2=(-5-5√ 721 )/2= -69.629

Khách vãng lai đã xóa
người học sinh giỏi:))
Xem chi tiết
Lấp La Lấp Lánh
1 tháng 11 2021 lúc 9:44

a) \(\Rightarrow x\left(x+3\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=0\\x=-3\end{matrix}\right.\)

b) \(\Rightarrow x\left(x^2-4\right)=0\Rightarrow x\left(x-2\right)\left(x+2\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=0\\x=2\\x=-2\end{matrix}\right.\)

c) \(\Rightarrow\left(x-1\right)\left(5x-1\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=1\\x=\dfrac{1}{5}\end{matrix}\right.\)

d) \(\Rightarrow2\left(x+5\right)-x\left(x+5\right)=0\Rightarrow\left(x+5\right)\left(2-x\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=-5\\x=2\end{matrix}\right.\)

e) \(\Rightarrow2x^2-10x-3x-2x^2=26\)

\(\Rightarrow-13x=26\Rightarrow x=-2\)

f) \(\Rightarrow\left(x-2012\right)\left(5x-1\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=2012\\x=\dfrac{1}{5}\end{matrix}\right.\)

giúp mik với
Xem chi tiết
Nguyễn Lê Phước Thịnh
26 tháng 10 2021 lúc 21:39

a: \(\Leftrightarrow\left(x-3\right)\left(5x-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=3\\x=\dfrac{1}{5}\end{matrix}\right.\)

b: \(\Leftrightarrow x\left(x-1\right)\left(x+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=1\\x=-1\end{matrix}\right.\)

Phạm Phúc Anh Tài
Xem chi tiết
Hà Quang Minh
16 tháng 8 2023 lúc 9:04

\(a,5x\left(x^2-9\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x^2=9\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x=3\\x=-3\end{matrix}\right.\\ b,3\left(x+3\right)-x^2-3x=0\\ \Leftrightarrow3\left(x+3\right)-x\left(x+3\right)=0\\ \Leftrightarrow\left(x+3\right)\left(3-x\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=3\\x=-3\end{matrix}\right.\\ c,x^2-9x-10=0\\ \Leftrightarrow x^2+x-10x-10=0\\ \Leftrightarrow x\left(x+1\right)-10\left(x+1\right)=0\\ \Leftrightarrow\left(x-10\right)\left(x+1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=-1\\x=10\end{matrix}\right.\)

a, 5\(x\)(\(x^2\) - 9) = 0

    \(\left[{}\begin{matrix}x=0\\x^2-9=0\end{matrix}\right.\)

\(\left[{}\begin{matrix}x=0\\x=3\\x=-3\end{matrix}\right.\) 

Vậy \(x\) \(\in\) { -3; 0; 3}

b, 3.(\(x+3\)) - \(x^2\) - 3\(x\) = 0

    3.(\(x+3\)) - \(x\).( \(x\) + 3) = 0

    (\(x+3\))( 3 - \(x\)) = 0

     \(\left[{}\begin{matrix}x=-3\\x=3\end{matrix}\right.\)

Vậy \(x\) \(\in\){ -3; 3}

c, \(x^2\) - 9\(x\) - 10 = 0

   \(x^2\) + \(x\) - 10\(x\)  - 10 = 0

   \(x.\left(x+1\right)\) - 10.( \(x-1\)) = 0

        (\(x+1\))(\(x-10\)) = 0

         \(\left[{}\begin{matrix}x+1=0\\x-10=0\end{matrix}\right.\)

           \(\left[{}\begin{matrix}x=-1\\x=10\end{matrix}\right.\)

Vậy \(x\) \(\in\){ -1; 10}

 

Nguyễn Hà My
16 tháng 8 2023 lúc 9:14

a) 5x(x2-9)=0

=> TH1 5x=0

      <=> x= 0

     TH2: 2x-9=0

       <=> 2x=9

       <=> x = \(\dfrac{9}{2}\)

b, 3(x+3) - x2- 3x = 0   

<=> 3x + 9 - x2 -3x = 0

<=> - x2 +9 = 0

<=> - x2 = -9

 <=> x = 3

c, x2 -9x -10 = 0

<=> x2 -x + 10x -10 = 0

<=> x(x-1)+10(x-1)=0     

 <=> (x-1)(x+10)=0

=> TH1: x-1=0

       <=> x=1

      TH2: x +10=0

      <=>  x=-10

                

Nguyễn Hoàng Tùng
Xem chi tiết
Akai Haruma
15 tháng 7 2023 lúc 0:06

Bạn xem đã viết đúng đề chưa vậy?

Nguyễn Hoàng Tùng
Xem chi tiết
Nè Munz
Xem chi tiết
Yeutoanhoc
27 tháng 8 2021 lúc 9:13

`a)5x(x-1)-(x+2)(5x-7)=6`

`<=>5x^2-5x-(5x^2-7x+10x-14)=6`

`<=>5x^2-5x-(5x^2+3x-14)=6`

`<=>-8x+14=6`

`<=>8x=8<=>x=1`

Vậy `x=1`

`b)(x+2)^2-(x^2-4)=0`

`<=>x^2+4x+4-x^2+4=0`

`<=>4x+8=0`

`<=>4x=-8`

`<=>x=-2`

Vậy `x=-2`

Minh Hiếu
27 tháng 8 2021 lúc 9:15

a)x=5/2

b)x=-2

the leagendary history
27 tháng 8 2021 lúc 9:30

a)5x.(x-1)-(x+2).(5x-7)=6

<=> 5x2-5x-(5x2-7x+10x-14)=6

<=>  5x2-5x-5x2+7x-10x+14=6

<=> -8x+14=6

<=> -8x=-8 => x=1

Vậy x=1

b) (x+2)2-(x2-4)=0

<=> (x+2)2-(x2-22)=0 <=> (x+2)2-(x-2)(x+2)=0

<=> (x+2)[(x+2)-(x-2)]=0

<=> (x+2)(x+2-x+2)=0

<=> (x+2).4=0

=> x+2=0

=> x=-2

Vậy x=-2

nè Moon
Xem chi tiết
Nguyễn Lê Phước Thịnh
14 tháng 10 2021 lúc 21:57

a: \(x^2-4x=3\left(x-4\right)\)

\(\Leftrightarrow\left(x-4\right)\left(x-3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=4\\x=3\end{matrix}\right.\)

b: \(x^2-5x-24=0\)

\(\Leftrightarrow\left(x-8\right)\left(x+3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=8\\x=-3\end{matrix}\right.\)

Rin Huỳnh
14 tháng 10 2021 lúc 21:57

a) pt <=> (x - 4)(x - 3) = 0

<=> x = 4 hoặc x = 3

b) pt <=> (x - 8)(x + 3) = 0

<=> x = 8 hoặc x = -3

Quynh Nhu
Xem chi tiết
Rin Huỳnh
21 tháng 10 2021 lúc 22:49

Pt <=> (2-x)(x+5)=0

<=> x=2 hoặc x=-5

Nguyễn Lê Phước Thịnh
21 tháng 10 2021 lúc 22:49

\(2\left(x+5\right)-x^2-5x=0\)

\(\Leftrightarrow\left(x+5\right)\left(2-x\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-5\\x=2\end{matrix}\right.\)