Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Đào Anh Ngọc
Xem chi tiết
Đức Anh Trịnh Thành
21 tháng 11 2015 lúc 23:04

d 10^n+72^n -1

=10^n -1+72n

=(10-1) [10^(n-1)+10^(n-2)+ .....................+10+1]+72n

=9[10^(n-1)+10^(n-2)+..........................-9n+81n

Minh Nguyễn Cao
Xem chi tiết
tth_new
10 tháng 8 2019 lúc 13:49

Đặt \(\frac{5-\sqrt{21}}{2}=a;\frac{5+\sqrt{21}}{2}=b>0\) thì \(ab=1\)

*Chứng minh an là số tự nhiên.

Với n = 0, 1 nó đúng. Giả sử nó đúng đến n = k tức là ta có:

\(\hept{\begin{cases}a^{k-1}+b^{k-1}\inℤ\\a^k+b^k\inℤ\end{cases}}\). Ta cần chưng minh nó đúng với n =  k + 1 hay:

\(a^k.a+b^k.b=\left(a^k+b^k\right)\left(a+b\right)-ab\left(b^{k-1}+a^{k-1}\right)\)

\(=\left(a^k+b^k\right)\left(a+b\right)-\left(b^{k-1}+a^{k-1}\right)\inℤ\) (em tắt tí nhá, dựa vào giả thiết quy nạp thôi)

Vậy ta có đpcm. 

Còn lại em chưa nghĩ ra

tth_new
10 tháng 8 2019 lúc 13:55

Cái bài ban nãy sửa a, b thành x và y nha! Không thôi nó trùng với đề bài. Tại quen tay nên em đánh luôn a, b

Nguyễn Linh Chi
10 tháng 8 2019 lúc 14:28

Nháp:

Với n=0 ; \(a:_n5\)dư 2

Với n=1 ; \(a:_n5\)dư 0

Với n=2 ; \(a:_n5\)dư 3

Với n=3 ; \(a:_n5\)dư 0

Với n=4 ; \(a:_n5\)dư 2

Với n=5 ; \(a:_n5\)dư 0

Với n=6 ; \(a:_n5\)dư 3

Với n=7 ; \(a:_n5\)dư 0

....

=> Rút ra kết luận: 

+) Với n =4k, \(a:_n5\)dư 2  hay \(a_{4k}\equiv2\left(mod5\right)\)

+) Với n =4k+1, 4k+3 \(a:_n5\)dư 0   hay \(a_{4k+1}\equiv0\left(mod5\right)\),\(a_{4k+3}\equiv0\left(mod5\right)\)

+) Với n =4k+2  \(a:_n5\)dư 3 hay \(a_{4k+2}\equiv3\left(mod5\right)\)

Chứng minh: Đặt : \(\frac{5-\sqrt{21}}{2}=x\)\(\frac{5+\sqrt{21}}{2}=y\)\(xy=2\)

a) Chứng minh : \(a_{4k}\equiv2\left(mod5\right)\)

Chứng minh quy nạp theo k

+) k=0, k=  vì \(a_{4.0}\equiv2\left(mod5\right);a_4\equiv2\left(mod5\right)\) 

+) Giả sự: đúng với k nghĩa là: \(a_{4k}\equiv2\left(mod5\right)\) 

Chứng minh đúng với k+1

Thật vậy: 

\(a_{4\left(k+1\right)}=x^{4k+4}+y^{4k+4}=x^{4k}.x^4+y^{4k}.y^4=\left(x^{4k}+y^{4k}\right)\left(x^4+y^4\right)-x^{4k}y^4-y^{4k}.x^4\)

\(=a_{4k}.a_4-x^4y^4\left(x^{4k-4}+y^{4k-4}\right)\equiv2.2-2^4.2\equiv2\left(mod5\right)\)

Vậy với mọi k \(a_{4k}\equiv2\left(mod5\right)\)

Chứng minh tương tự cho các trường hợp dư 0 và dư 3 sau

...

Cần tìm cách nhanh, ngắn gọn và hay hơn! 

   

Phạm Thị Hằng
Xem chi tiết
pham trung thanh
Xem chi tiết
chu van anh
Xem chi tiết
tran hoang dang
14 tháng 1 2017 lúc 20:41

minh ko biet xin loi ban nha

minh ko biet xin loi ban nha

minh ko biet xin loi ban nha

minh ko biet xin loi ban nha

Trần Quốc Đạt
15 tháng 1 2017 lúc 12:25

\(a_3=3,a_4=\frac{11}{3}\) nên đề sai rồi nha bạn.

Tăng Văn Minh
15 tháng 1 2017 lúc 15:31

\(\hept{\begin{cases}a_1=a_2=1\\a_n=\frac{a_{n-1}^2+2}{a_{n-2}}\end{cases}}\) như vậy ms đúng đề bạn ơi

Kyotaka Ayanokouji
Xem chi tiết
NGUYỄN MINH HUY
Xem chi tiết
Nguyễn Việt Lâm
8 tháng 3 2021 lúc 5:17

a.

\(\Leftrightarrow na_{n+2}-na_{n+1}=2\left(n+1\right)a_{n+1}-2\left(n+1\right)a_n\)

\(\Leftrightarrow\dfrac{a_{n+2}-a_{n+1}}{n+1}=2.\dfrac{a_{n+1}-a_n}{n}\)

Đặt \(b_n=\dfrac{a_{n+1}-a_n}{n}\Rightarrow\left\{{}\begin{matrix}b_1=\dfrac{a_2-a_1}{1}=1\\b_{n+1}=2b_n\end{matrix}\right.\) \(\Rightarrow b_n=2^{n-1}\Rightarrow a_{n+1}-a_n=n.2^{n-1}\)

\(\Leftrightarrow a_{n+1}-\left[\dfrac{1}{2}\left(n+1\right)-1\right]2^{n+1}=a_n-\left[\dfrac{1}{2}n-1\right]2^n\)

Đặt \(c_n=a_n-\left[\dfrac{1}{2}n-1\right]2^n\Rightarrow\left\{{}\begin{matrix}c_1=a_1-\left[\dfrac{1}{2}-1\right]2^1=2\\c_{n+1}=c_n=...=c_1=2\end{matrix}\right.\)

\(\Rightarrow a_n=\left[\dfrac{1}{2}n-1\right]2^n+2=\left(n-2\right)2^{n-1}+2\)

Nguyễn Việt Lâm
8 tháng 3 2021 lúc 5:21

b.

Câu b này đề sai

Với \(n=1\Rightarrow\sqrt{a_1-1}=0< \dfrac{1\left(1+1\right)}{2}\)

Với \(n=2\Rightarrow\sqrt{a_1-1}+\sqrt{a_2-1}=0+1< \dfrac{2\left(2+1\right)}{2}\)

Có lẽ đề đúng phải là: \(\sqrt{a_1-1}+\sqrt{a_2-1}+...+\sqrt{a_n-1}\ge\dfrac{n\left(n-1\right)}{2}\)

Ta sẽ chứng minh: \(\sqrt{a_n-1}\ge n-1\) ; \(\forall n\in Z^+\)

Hay: \(\sqrt{\left(n-2\right)2^{n-1}+1}\ge n-1\)

\(\Leftrightarrow\left(n-2\right)2^{n-1}+2n\ge n^2\)

- Với \(n=1\Rightarrow-1+2\ge1^2\) (đúng)

- Với \(n=2\Rightarrow0+4\ge2^2\) (đúng)

- Giả sử BĐT đúng với \(n=k\ge2\) hay \(\left(k-2\right)2^{k-1}+2k\ge k^2\)

Ta cần chứng minh: \(\left(k-1\right)2^k+2\left(k+1\right)\ge\left(k+1\right)^2\)

\(\Leftrightarrow\left(k-1\right)2^k+1\ge k^2\)

Thật vậy: \(\left(k-1\right)2^k+1=2\left(k-2\right)2^{k-1}+2^k+1\ge2k^2-4k+2^k+1\)

\(\ge2k^2-4k+5=k^2+\left(k-2\right)^2+1>k^2\) (đpcm)

Do đó:

\(\sqrt{a_1-1}+\sqrt{a_2-1}+...+\sqrt{a_n-1}>0+1+...+n-1=\dfrac{n\left(n-1\right)}{2}\)

Nguyễn Việt Lâm
9 tháng 3 2021 lúc 1:19

c.

Ta có:

\(\dfrac{a_n}{3^n}=\dfrac{\left(n-2\right)2^{n-1}+2}{3^n}=\dfrac{n}{2\left(\dfrac{3}{2}\right)^n}-\left(\dfrac{2}{3}\right)^n+\dfrac{2}{3^n}\)

Đặt \(S_n=\sum\limits^n_{i=1}\dfrac{a_n}{3^n}=\dfrac{1}{2}\sum\limits^n_{i=1}\dfrac{n}{\left(\dfrac{3}{2}\right)^n}-\sum\limits^n_{j=1}\left(\dfrac{2}{3}\right)^n+2\sum\limits^n_{k=1}\dfrac{1}{3^n}=\dfrac{1}{2}S'-2+2\left(\dfrac{2}{3}\right)^n+1-\dfrac{1}{3^n}\)

Xét \(S'=\sum\limits^n_{i=1}\dfrac{n}{\left(\dfrac{3}{2}\right)^n}\)

\(S'=\sum\limits^n_{i=1}\dfrac{n}{\left(\dfrac{3}{2}\right)^n}=\dfrac{1}{\dfrac{3}{2}}+\dfrac{2}{\left(\dfrac{3}{2}\right)^2}+\dfrac{3}{\left(\dfrac{3}{2}\right)^3}+...+\dfrac{n}{\left(\dfrac{3}{2}\right)^n}\)

\(\dfrac{3}{2}S'=1+\dfrac{2}{\dfrac{3}{2}}+\dfrac{3}{\left(\dfrac{3}{2}\right)^2}+...+\dfrac{n}{\left(\dfrac{3}{2}\right)^{n-1}}\)

\(\Rightarrow\dfrac{1}{2}S'=1+\dfrac{1}{\left(\dfrac{3}{2}\right)}+\dfrac{1}{\left(\dfrac{3}{2}\right)^2}+...+\dfrac{1}{\left(\dfrac{3}{2}\right)^{n-1}}-\dfrac{n}{\left(\dfrac{3}{2}\right)^n}=\dfrac{1-\left(\dfrac{2}{3}\right)^n}{1-\dfrac{2}{3}}=3-3\left(\dfrac{2}{3}\right)^n-n\left(\dfrac{2}{3}\right)^n\)

\(\Rightarrow S_n=2-\left(\dfrac{2}{3}\right)^n-\dfrac{1}{3^n}-n\left(\dfrac{2}{3}\right)^n\)

\(\Rightarrow\lim\left(S_n\right)=2\)

Linhhhhhh
Xem chi tiết
Minh Nguyễn Cao
Xem chi tiết