Cho dãy số \(\left(a_n\right)\) xác định bởi công thức:
\(\hept{\begin{cases}a_1=1;a_2=2;\\na_{n+2}=\left(3n+2\right)a_{n+1}-2\left(n+1\right)a_n;n=1;2;3...\end{cases}}\)
a) Tìm công thức số hạng tổng quát của dãy \(\left(a_n\right)\)
b)Chứng minh \(\sqrt{a_1-1}+\sqrt{a_2-1}+...+\sqrt{a_n-1}\ge\frac{n\left(n+1\right)}{2};\forall n\inℕ^∗\)
c) Tính \(lim\left(\frac{a_1}{3}+\frac{a_2}{3^2}+...+\frac{a_n}{3^n}\right)\)
a.
\(\Leftrightarrow na_{n+2}-na_{n+1}=2\left(n+1\right)a_{n+1}-2\left(n+1\right)a_n\)
\(\Leftrightarrow\dfrac{a_{n+2}-a_{n+1}}{n+1}=2.\dfrac{a_{n+1}-a_n}{n}\)
Đặt \(b_n=\dfrac{a_{n+1}-a_n}{n}\Rightarrow\left\{{}\begin{matrix}b_1=\dfrac{a_2-a_1}{1}=1\\b_{n+1}=2b_n\end{matrix}\right.\) \(\Rightarrow b_n=2^{n-1}\Rightarrow a_{n+1}-a_n=n.2^{n-1}\)
\(\Leftrightarrow a_{n+1}-\left[\dfrac{1}{2}\left(n+1\right)-1\right]2^{n+1}=a_n-\left[\dfrac{1}{2}n-1\right]2^n\)
Đặt \(c_n=a_n-\left[\dfrac{1}{2}n-1\right]2^n\Rightarrow\left\{{}\begin{matrix}c_1=a_1-\left[\dfrac{1}{2}-1\right]2^1=2\\c_{n+1}=c_n=...=c_1=2\end{matrix}\right.\)
\(\Rightarrow a_n=\left[\dfrac{1}{2}n-1\right]2^n+2=\left(n-2\right)2^{n-1}+2\)
b.
Câu b này đề sai
Với \(n=1\Rightarrow\sqrt{a_1-1}=0< \dfrac{1\left(1+1\right)}{2}\)
Với \(n=2\Rightarrow\sqrt{a_1-1}+\sqrt{a_2-1}=0+1< \dfrac{2\left(2+1\right)}{2}\)
Có lẽ đề đúng phải là: \(\sqrt{a_1-1}+\sqrt{a_2-1}+...+\sqrt{a_n-1}\ge\dfrac{n\left(n-1\right)}{2}\)
Ta sẽ chứng minh: \(\sqrt{a_n-1}\ge n-1\) ; \(\forall n\in Z^+\)
Hay: \(\sqrt{\left(n-2\right)2^{n-1}+1}\ge n-1\)
\(\Leftrightarrow\left(n-2\right)2^{n-1}+2n\ge n^2\)
- Với \(n=1\Rightarrow-1+2\ge1^2\) (đúng)
- Với \(n=2\Rightarrow0+4\ge2^2\) (đúng)
- Giả sử BĐT đúng với \(n=k\ge2\) hay \(\left(k-2\right)2^{k-1}+2k\ge k^2\)
Ta cần chứng minh: \(\left(k-1\right)2^k+2\left(k+1\right)\ge\left(k+1\right)^2\)
\(\Leftrightarrow\left(k-1\right)2^k+1\ge k^2\)
Thật vậy: \(\left(k-1\right)2^k+1=2\left(k-2\right)2^{k-1}+2^k+1\ge2k^2-4k+2^k+1\)
\(\ge2k^2-4k+5=k^2+\left(k-2\right)^2+1>k^2\) (đpcm)
Do đó:
\(\sqrt{a_1-1}+\sqrt{a_2-1}+...+\sqrt{a_n-1}>0+1+...+n-1=\dfrac{n\left(n-1\right)}{2}\)
c.
Ta có:
\(\dfrac{a_n}{3^n}=\dfrac{\left(n-2\right)2^{n-1}+2}{3^n}=\dfrac{n}{2\left(\dfrac{3}{2}\right)^n}-\left(\dfrac{2}{3}\right)^n+\dfrac{2}{3^n}\)
Đặt \(S_n=\sum\limits^n_{i=1}\dfrac{a_n}{3^n}=\dfrac{1}{2}\sum\limits^n_{i=1}\dfrac{n}{\left(\dfrac{3}{2}\right)^n}-\sum\limits^n_{j=1}\left(\dfrac{2}{3}\right)^n+2\sum\limits^n_{k=1}\dfrac{1}{3^n}=\dfrac{1}{2}S'-2+2\left(\dfrac{2}{3}\right)^n+1-\dfrac{1}{3^n}\)
Xét \(S'=\sum\limits^n_{i=1}\dfrac{n}{\left(\dfrac{3}{2}\right)^n}\)
\(S'=\sum\limits^n_{i=1}\dfrac{n}{\left(\dfrac{3}{2}\right)^n}=\dfrac{1}{\dfrac{3}{2}}+\dfrac{2}{\left(\dfrac{3}{2}\right)^2}+\dfrac{3}{\left(\dfrac{3}{2}\right)^3}+...+\dfrac{n}{\left(\dfrac{3}{2}\right)^n}\)
\(\dfrac{3}{2}S'=1+\dfrac{2}{\dfrac{3}{2}}+\dfrac{3}{\left(\dfrac{3}{2}\right)^2}+...+\dfrac{n}{\left(\dfrac{3}{2}\right)^{n-1}}\)
\(\Rightarrow\dfrac{1}{2}S'=1+\dfrac{1}{\left(\dfrac{3}{2}\right)}+\dfrac{1}{\left(\dfrac{3}{2}\right)^2}+...+\dfrac{1}{\left(\dfrac{3}{2}\right)^{n-1}}-\dfrac{n}{\left(\dfrac{3}{2}\right)^n}=\dfrac{1-\left(\dfrac{2}{3}\right)^n}{1-\dfrac{2}{3}}=3-3\left(\dfrac{2}{3}\right)^n-n\left(\dfrac{2}{3}\right)^n\)
\(\Rightarrow S_n=2-\left(\dfrac{2}{3}\right)^n-\dfrac{1}{3^n}-n\left(\dfrac{2}{3}\right)^n\)
\(\Rightarrow\lim\left(S_n\right)=2\)