tìm giới hạn
\(\lim\limits_{x\rightarrow-1}\frac{x+\sqrt{4x+5}}{\sqrt{7-2x}-\sqrt{x+10}}\)
Tìm giới hạn:
a, \(\lim\limits_{x\rightarrow+\infty}\dfrac{x-2}{3-\sqrt{x^2+7}}\)
b, \(\lim\limits_{x\rightarrow-\infty}\dfrac{\sqrt{x^2-x}-\sqrt{4x^2+1}}{2x+3}\)
a: \(\lim\limits_{x\rightarrow+\infty}\dfrac{x-2}{3-\sqrt{x^2+7}}\)
\(=\lim\limits_{x\rightarrow+\infty}\dfrac{1-\dfrac{2}{x}}{\dfrac{3}{x}-\sqrt{1+\dfrac{7}{x^2}}}\)
\(=\dfrac{1}{0-\sqrt{1+0}}=\dfrac{1}{-1}=-1\)
b: \(\lim\limits_{x\rightarrow-\infty}\dfrac{\sqrt{x^2-x}-\sqrt{4x^2+1}}{2x+3}\)
\(=\dfrac{\sqrt{x^2\left(1-\dfrac{1}{x}\right)}-\sqrt{x^2\left(4+\dfrac{1}{x^2}\right)}}{2x+3}\)
\(=\dfrac{-x\cdot\sqrt{1-\dfrac{1}{x}}+x\cdot\sqrt{4+\dfrac{1}{x^2}}}{x\left(2+\dfrac{3}{x}\right)}\)
\(=\dfrac{-\sqrt{1-\dfrac{1}{x}}+\sqrt{4+\dfrac{1}{x^2}}}{2+\dfrac{3}{x}}=\dfrac{-1+2}{2}=\dfrac{1}{2}\)
tìm giới hạn \(\lim\limits_{x\rightarrow-\infty}\dfrac{\sqrt{4x^2+2x-1}-x}{3x-2}\)
Sao anh không thấy đề cụ thể ta!
\(\lim\limits_{x\rightarrow-\infty}\dfrac{\sqrt{4x^2+2x-1}-x}{3x-2}=\lim\limits_{x\rightarrow-\infty}\dfrac{\sqrt{\dfrac{4x^2+2x-1}{x^2}}-\dfrac{x}{x}}{\dfrac{3x-2}{x}}\)
\(=\lim\limits_{x\rightarrow-\infty}\dfrac{\sqrt{4+\dfrac{2}{x}-\dfrac{1}{x^2}}-1}{3-\dfrac{2}{x}}=-\dfrac{4-1}{3}=-1\)
\(\lim\limits_{x\rightarrow-\infty}\dfrac{\sqrt{4x^2+2x-1}-x}{3x-2}=\lim\limits_{x\rightarrow-\infty}\dfrac{\sqrt{4+\dfrac{2}{x}-\dfrac{1}{x^2}}+1}{-3+\dfrac{2}{x}}=\dfrac{\sqrt{4}+1}{-3}=-1\).
Bài 1
a. \(\lim\limits_{x\rightarrow-\infty}\frac{\sqrt{4x^2}+1}{3x-1}\)
b. \(\lim\limits_{x\rightarrow+\infty}\frac{\sqrt{9x^2+x+1}-\sqrt{4x^2+2x+1}}{x+1}\)
c. \(\lim\limits_{x\rightarrow+\infty}\frac{\sqrt{x+2x+3}+4x+1}{\sqrt{4x^2+1}+2-x}\)
d. \(\lim\limits_{x\rightarrow+\infty}\frac{3x-2\sqrt{x}+\sqrt{x^4-5x}}{2x^2+4x-5}\)
Bài 2
a. \(\lim\limits_{x\rightarrow-\infty}\frac{2x+1}{x-1}\)
b. \(\lim\limits_{x\rightarrow-\infty}\frac{2x^3+3}{x^3-2x^2+1}\)
c. \(\lim\limits_{x\rightarrow+\infty}\frac{\left(3x^2+1\right)\left(5x+3\right)}{\left(2x^3-1\right)\left(x+4\right)}\)
Bài 1:
\(a=\lim\limits_{x\rightarrow-\infty}\frac{2\left|x\right|+1}{3x-1}=\lim\limits_{x\rightarrow-\infty}\frac{-2x+1}{3x-1}=\lim\limits_{x\rightarrow-\infty}\frac{-2+\frac{1}{x}}{3-\frac{1}{x}}=-\frac{2}{3}\)
\(b=\lim\limits_{x\rightarrow+\infty}\frac{\sqrt{9+\frac{1}{x}+\frac{1}{x^2}}-\sqrt{4+\frac{2}{x}+\frac{1}{x^2}}}{1+\frac{1}{x}}=\frac{\sqrt{9}-\sqrt{4}}{1}=1\)
\(c=\lim\limits_{x\rightarrow+\infty}\frac{\sqrt{1+\frac{2}{x}+\frac{3}{x^2}}+4+\frac{1}{x}}{\sqrt{4+\frac{1}{x^2}}+\frac{2}{x}-1}=\frac{1+4}{\sqrt{4}-1}=5\)
\(d=\lim\limits_{x\rightarrow+\infty}\frac{\frac{3}{x}-\frac{2}{x\sqrt{x}}+\sqrt{1-\frac{5}{x^3}}}{2+\frac{4}{x}-\frac{5}{x^2}}=\frac{1}{2}\)
Bài 2:
\(a=\lim\limits_{x\rightarrow-\infty}\frac{2+\frac{1}{x}}{1-\frac{1}{x}}=2\)
\(b=\lim\limits_{x\rightarrow-\infty}\frac{2+\frac{3}{x^3}}{1-\frac{2}{x}+\frac{1}{x^3}}=2\)
\(c=\lim\limits_{x\rightarrow+\infty}\frac{x^2\left(3+\frac{1}{x^2}\right)x\left(5+\frac{3}{x}\right)}{x^3\left(2-\frac{1}{x^3}\right)x\left(1+\frac{4}{x}\right)}=\frac{15}{+\infty}=0\)
Tìm giới hạn:
a, \(\lim\limits_{x\rightarrow+\infty}\dfrac{\sqrt{x^2+x+2}}{x-1}\)
b, \(\lim\limits_{x\rightarrow-\infty}\left(\sqrt{4x^2-x}+2x\right)\)
a: \(\lim\limits_{x\rightarrow+\infty}\dfrac{\sqrt{x^2+x+2}}{x-1}\)
\(=\lim\limits_{x\rightarrow+\infty}\dfrac{\sqrt{1+\dfrac{1}{x}+\dfrac{2}{x^2}}}{1-\dfrac{1}{x}}=\dfrac{\sqrt{1+0+0}}{1-0}\)
\(=\dfrac{1}{1}\)
=1
b: \(\lim\limits_{x\rightarrow-\infty}\left(\sqrt{4x^2-x}+2x\right)\)
\(=\lim\limits_{x\rightarrow-\infty}\dfrac{4x^2-x-4x^2}{\sqrt{4x^2-x}-2x}\)
\(=\lim\limits_{x\rightarrow-\infty}\dfrac{-x}{\sqrt{x^2\left(4-\dfrac{1}{x}\right)}-2x}\)
\(=\lim\limits_{x\rightarrow-\infty}\dfrac{-x}{-x\sqrt{4-\dfrac{1}{x}}-2x}\)
\(=\lim\limits_{x\rightarrow-\infty}\dfrac{1}{\sqrt{4-\dfrac{1}{x}}+2}=\dfrac{1}{\sqrt{4}+2}=\dfrac{1}{2+2}=\dfrac{1}{4}\)
Tìm các giới hạn sau:
a) \(\lim\limits_{x\rightarrow2}\dfrac{x-\sqrt{x+2}}{\sqrt{4x+1}-3}\)
b) \(\lim\limits_{x\rightarrow1}\dfrac{\sqrt{2x+7}+x-4}{x^3-4x^2+3}\)
a/ L'Hospital:
\(=\lim\limits_{x\rightarrow2}\dfrac{x-\left(x+2\right)^{\dfrac{1}{2}}}{\left(4x+1\right)^{\dfrac{1}{2}}-3}=\lim\limits_{x\rightarrow2}\dfrac{1-\dfrac{1}{2}\left(x+2\right)^{-\dfrac{1}{2}}}{\dfrac{1}{2}\left(4x+1\right)^{-\dfrac{1}{2}}.4}=\dfrac{1-\dfrac{1}{2}.4^{-\dfrac{1}{2}}}{2.9^{-\dfrac{1}{2}}}=\dfrac{9}{8}\)
b/ L'Hospital:\(=\lim\limits_{x\rightarrow1}\dfrac{\left(2x+7\right)^{\dfrac{1}{2}}+x-4}{x^3-4x^2+3}=\lim\limits_{x\rightarrow1}\dfrac{\dfrac{1}{2}\left(2x+7\right)^{-\dfrac{1}{2}}.2+1}{3x^2-8x}=\dfrac{9^{-\dfrac{1}{2}}+1}{3-8}=-\dfrac{4}{15}\)
tìm giới hạn
\(\lim\limits_{x\rightarrow-\infty}\frac{\sqrt{x^2+2x}+3x}{\sqrt{4x^2+1}-x+3}\)
\(=\frac{\left|x\right|\sqrt{1+\frac{2}{x}}+3x}{\left|x\right|\sqrt{4+\frac{1}{x^2}}-x+3}=\frac{-x\left(\sqrt{1+\frac{2}{x}}-3\right)}{-x\left(\sqrt{4+\frac{1}{x^2}}+1+\frac{3}{x}\right)}=\frac{1-3}{2+1+0}=...\)
đ10b1c5
tìm giới hạn
\(\lim\limits_{x\rightarrow+\infty}\frac{\sqrt{x^2+2x}+4x}{\sqrt{4x^2+1}+2-x}\)
BÀI 3. Tính các giới hạn sau:
a) \(\lim\limits_{x\rightarrow-\infty}\dfrac{2x^3-5x^2+1}{7x^2-x+4}\)
b) \(\lim\limits_{x\rightarrow+\infty}x\sqrt{\dfrac{x^2+2x+3}{3x^4+4x^2-5}}\)
a: \(=lim_{x->-\infty}\dfrac{2x-5+\dfrac{1}{x^2}}{7-\dfrac{1}{x}+\dfrac{4}{x^2}}\)
\(=\dfrac{2x-5}{7}\)
\(=\dfrac{2}{7}x-\dfrac{5}{7}\)
\(=-\infty\)
b: \(=lim_{x->+\infty}x\sqrt{\dfrac{1+\dfrac{1}{x}+\dfrac{3}{x^2}}{3x^2+4-\dfrac{5}{x^2}}}\)
\(=lim_{x->+\infty}x\sqrt{\dfrac{1}{3x^2+4}}=+\infty\)
tìm các giới hạn sau:
a, \(\lim\limits_{x\rightarrow-3}\frac{x+\sqrt{3-2x}}{x^2+3x}\)
b, \(\lim\limits_{x\rightarrow0}\frac{\sqrt{x+9}+\sqrt{x+16}-7}{x}\)
c, \(\lim\limits_{x\rightarrow\frac{1}{2}}\frac{8x^2-1}{6x^2-5x+1}\)
d, \(\lim\limits_{x\rightarrow0}\frac{\sqrt{x^2+1}-1}{4-\sqrt{x^2+16}}\)
\(a=\lim\limits_{x\rightarrow-3}\frac{x^2+2x-3}{x\left(x+3\right)\left(x-\sqrt{3-2x}\right)}=\lim\limits_{x\rightarrow-3}\frac{\left(x-1\right)\left(x+3\right)}{x\left(x+3\right)\left(x-\sqrt{3-2x}\right)}=\lim\limits_{x\rightarrow-3}\frac{x-1}{x\left(x-\sqrt{3-2x}\right)}=-\frac{2}{9}\)
\(b=\lim\limits_{x\rightarrow0}\frac{\sqrt{x+9}-3+\sqrt{x+16}-4}{x}=\lim\limits_{x\rightarrow0}\frac{\frac{x}{\sqrt{x+9}+3}+\frac{x}{\sqrt{x+16}+4}}{x}=\lim\limits_{x\rightarrow0}\left(\frac{1}{\sqrt{x+9}+3}+\frac{1}{\sqrt{x+16}+4}\right)=\frac{7}{24}\)
\(c=\lim\limits_{x\rightarrow\frac{1}{2}}\frac{8x^2-1}{6x^2-5x+1}\) ko phải dạng vô định, đề bài là \(8x^2\) hay \(8x^3\) bạn?
\(d=\lim\limits_{x\rightarrow0}\frac{\left(\sqrt{x^2+1}-1\right)\left(\sqrt{x^2+1}+1\right)\left(4+\sqrt{x^2+16}\right)}{\left(4-\sqrt{x^2+16}\right)\left(4+\sqrt{x^2+16}\right)\left(\sqrt{x^2+1}+1\right)}\)
\(=\lim\limits_{x\rightarrow0}\frac{x^2\left(4+\sqrt{x^2+16}\right)}{-x^2\left(\sqrt{x^2+1}+1\right)}=\lim\limits_{x\rightarrow0}\frac{4+\sqrt{x^2+16}}{-\sqrt{x^2+1}-1}=\frac{8}{-2}=-4\)