Cho hình thang ABCD (AB//CD), hai đường chéo cắt nhau tại O. Qua O vẽ một đường thẳng song song với AB cắt AD và BC lần lượt tại M và N. CMR:
a, OM = ON
b, 1/AB + 1/CD = 2/MN
c, SAOD . SBOC = SAOB . SCOD
câu c thôi nhá
Cho hình thang ABCD (AB // CD), hai đường chéo cắt nhau tại O. Qua O kẻ đường thẳng d song song với AB cắt AD và BC lần lượt tại M và N. Chứng minh: a) OM = ON; b) 1/AB + 1/CD + 2/MN
tham khảo :
https://lazi.vn/edu/exercise/582904/cho-hinh-thang-abcd-ab-cd-cheo-cat-nhau-tai-o-p
Cho hình thang ABCD( AB//CD; AB<CD) . Hai đường chéo cắt
nhau tại O.
a) CMR: OA.OD=OB.OC
b) Đường thẳng đi qua O mà song song với CD cắt AD và BC lần lượt
tại M và N. CMR: OM=ON.
c) AD cắt BC tại E. EO cắt AB và CD lần lượt tại P và Q. CMR: P là
trung điểm của AB; Q là trung điểm của CD;
mg giúp mình câu c với
a.Xét ∆OCD có AB // CD (gt)
⇒OAOC=OBOD⇒OAOC=OBOD (hệ quả của định lí Thales)
⇒OA.OD=OB.OC
Cho hình thang ABCD (AB//CD), 2 đường chéo cắt nhau tại O. Qua O vẽ đường thẳng sọng song với AB cắt AD và BC lần lượt tại M và N. Chứng minh rằng:
a, OM=ON
b, 1/AB + 1/CD = 2/MN
Cho hình thang ABCD (AB // CD); hai đường chéo cắt nhau tại O. Qua O kẻ đường thẳng song song với AB cắt AD và BC lần lượt tại M và N. Chứng minh OM = ON
Ta có: MN // AB (gt); AB // CD(gt) => MN // AB // CD
Xét tam giác ABC có: OM // AB (MN // AB)
=> \(\dfrac{OM}{AB}=\dfrac{CM}{CA}\) (hệ quả định lý Ta lét trong tam giác) (1)
Xét tam giác ABD có: ON // AB (MN // AB)
=> \(\dfrac{ON}{AB}=\dfrac{DN}{DB}\) (hệ quả định lý Ta lét trong tam giác) (2)
Xét hình thang ABCD có: MN // AB // CD (cmt)
=> \(\dfrac{CM}{CA}=\dfrac{DN}{DB}\) (định lý Ta lét trong hình thang) (3)
Từ (1) (2) (3) => OM = ON
Trong ∆DAB có: \(\dfrac{MO}{AB}=\dfrac{DO}{DB}\) ( hệ quả Ta lét) (1)
Trong ∆CAB có: \(\dfrac{NO}{AB}=\dfrac{CO}{AC}\) ( hệ quả Ta lét) (2)
Trong ∆OAB có: \(\dfrac{CO}{CA}=\dfrac{DO}{DB}\) ( hệ quả Ta lét) (3)
từ (1), (2), (3) => \(\dfrac{MO}{AB}=\dfrac{NO}{AB}\) =>\(MO=NO\)
Bài 7 (2) :Cho hình thang ABCD (AB//CD) ; hai đường chéo cắt nhau tại O. Qua O kẻ đường thẳng song song với AB cắt AD và BC lần lượt tại M và N . Chứng minh OM = ON
Xét △ADC có :MO // DC
\(\Rightarrow\frac{MO}{DC}=\frac{AO}{AC}\)(Hệ quả định lí Thales) (1)
Xét △BDC có : ON // DC
\(\Rightarrow\frac{NO}{DC}=\frac{BO}{BD}\)(Hệ quả định lí Thales) (2)
Xét △ODC có AB // DC
\(\Rightarrow\frac{AO}{AC}=\frac{BO}{BD}\)(Theo hệ quả định lí Thales) (3)
Từ (1) ; (2) và (3) :
\(\Rightarrow\frac{OM}{CD}=\frac{ON}{CD}\)
\(\Rightarrow OM=ON\left(ĐPCM\right)\)
Hình thang ABCD( AB//CD) có hai đường chéo cắt nhau tại O. Đường thẳng qua O và song song với đáy AB cắt các cạnh bên AD,BC theo thứ tự M và N
a. Chứng minh rằng OM=ON
bChứng minh rằng 1/AB+1/CD=2/MN
c Biết SAOB=2010*2; SCOD= 2011*2. TÍNH sabcd
Tam giác ABD có OE//AB =>DO/DB = OE/AB (Theo hệ quả Đlý Ta-lét) (1)
Tam giác ABC có OF//AB =>CO/CA = OF/AB (Theo hệ quả Đlý Ta-lét) (2)
Tam giác ABO có CD//AB =>OD/OB = OC/OA (Theo hệ quả Đlý Ta-lét)
=> OD/(OB+OD) = OC/(OA+OC) hay OD/DB=CO/CA (3)
Từ (1) (2) và (3) => OE/AB = OF/AB
=> OE = OF (điều phải chứng minh.)
Chúc bạn học giỏi nha.
Bài 1: Cho hình thang ABCD ( AB // CD), đường chéo AC và BD cắt nhau tại O. Đường thẳng qua O và song song với AB cắt các cạnh bên AD, BC lần lượt tại M, N.
1. Chứng minh: OM = ON 2. Chứng minh: (AM/AD)+(CN/CB)=1
Cho hình thang ABCD ( AB // CD), đường chéo AC và BD cắt nhau tại O. Đường thẳng qua O và song song với AB cắt các cạnh bên AD, BC lần lượt tại M, N. 1. Chứng minh: OM = ON 2. Chứng minh: (AM/AD)+(CN/CB)=1
Bài 7 (2) :Cho hình thang ABCD (AB//CD) ; hai đường chéo cắt nhau tại O. Qua O kẻ đường thẳng song song với AB cắt AD lần lượt tại M và N . Chứng minh OM = ON
cho hình thang ABCD(AB//CD)có 2 đường chéo cắt nhau tại O.
a) CMR: SAOD = SBOC
b) qua O kẻ 1 đường thẳng song song với AB cắt AD, BC lần lượt tại M,N. CMR: OM = ON