Cho hình thang ABCD (AB // CD). O là giao điểm của AC và BD,EF//AB
a) Chứng minh: ;
b) Nếu đường thẳng a đi qua giao điểm O của hai đường chéo AC và BD. Nhận xét gì về 2 đoạn thẳng OE, OF
Giải hộ mình với mình cần gấp
Cho hình thang ABCD (AB//CD) có AB=7,5cm, CD=12cm. Gọi M là trung điểm của CD, E là giao điểm của MA và BD, F là giao điểm MB và AC.
a, Chứng minh EF//AB
b, Tính EF
Cho hình thang ABCD có AB= 7,5cm , CD = 12 cm . Gọi M là trung điểm CD , E là giao điểm MA và BD . F là giao điểm MB và AC
a, Chứng minh EF // AB
b, Tính EF
c, Kéo dài CB cắt DA tại M , AC cắt BD tại O . CHứng minh MO đi qua trung điểm AB và CD
Gọi \(N\) là trung điểm của đoạn thắng \(AB\) \(;\) \(N'\) là giao điểm của \(GM\) và \(AB\)
Tứ giác \(ABCD\) là hình thang nên \(AB\text{//}CD\)
Khi đó,
\(\Delta GMD\) có \(AN'\text{//}MD\), nên \(\frac{AN'}{MD}=\frac{GN'}{GM}\) (hệ quả của định lý Ta-lét) \(\left(3\right)\)
\(\Delta GMC\) có \(N'B\text{//}MC\), nên \(\frac{N'B}{MC}=\frac{GN'}{GM}\) \(\left(4\right)\)
\(\left(3\right);\) \(\left(4\right)\) \(\Rightarrow\) \(\frac{AN'}{MD}=\frac{N'B}{MC}\) \(\left(=\frac{GN'}{GM}\right)\)
Mà \(MD=MC\) \(\left(gt\right)\), do đó, \(AN'=N'B\) hay \(N'\) phải trùng với \(N\)
Tức là ba điểm \(G,\) \(N,\) \(M\) thẳng hàng \(\left(\text{*}\right)\)
Tương tự, ta cũng chứng minh được ba điểm \(N,\) \(O,\) \(M\) thẳng hàng \(\left(\text{**}\right)\)
Từ \(\left(\text{*}\right)\) và \(\left(\text{**}\right)\) suy ra bốn điểm \(G,\) \(N,\) \(O,\) \(M\) thẳng hàng
Vậy, đoạn thẳng \(GO\) sẽ lần lượt đi qua \(N\) và \(M\) hay đi qua trung điểm của \(AB\) và \(CD\)
Đặt AB = m, MC = MD = n.
a) Do AB // CD, ta có :
\(\frac{MI}{TA}=\frac{MD}{AB}=\frac{n}{m}\)
\(\frac{MK}{KB}=\frac{MC}{AB}=\frac{n}{m}\)
Từ (1) và (2) suy ra \(\frac{MI}{IA}=\frac{MK}{KB}\) Từ đó theo định lí đảo của định lí Ta - lét đối với tam giác MAB, ta có IK // AB. ( nhưng lớp 8 chưa học ta -lét thì fai )
Bài 4.Cho hình thang ABCD (AB // CD). Gọi M là trung điểm
của CD, E là giao điểm của MA và BD, F là giao điểm của MB
và AC.
a) Chứng minh EF // AB
b) Tính EF biết AB = 7,5cm, CD = 12cm
Cho hình thang ABCD có hai đáy AB và CD. Gọi M là trung điểm của CD, E là giao điểm của MA và BD, F là giao điểm của MB và AC.
a) Chứng minh EF song song với AB.
b) Đường thẳng EF cắt AD, BC lần lượt tại H và N. Chứng minh: HE = EF = FN.
cho hình thang ABCD (AB// CD) có AB = 15cm, CD = 20cm, Goị M là trung diểm của CD, E là giao điểm của MA và BD, F là giao điểm của MB và AC
a)Chứng minh: EF//AB
b) tính độ dài EF
Cho hình thang ABCD(AB//CD) O là giao điểm của AC và BD qua O kẻ đường thẳng a//AB và CD chứng minh rằng :
a)OE=OF
b) 1/AB+1/CD=2/EF
Gấp ạ💦💦
Cho hình thang ABCD (AB // CD) có O là giao điểm của hai đường chéo AC và BD. Qua A, kẻ đường thẳng song song với BC cắt BD tại E. Qua B, kẻ đường thẳng song song với AD cắt AC tại F.
a) Chứng minh: EF // CD.
b) Chứng minh: AB2 = CD . EF
Cho hình thang ABCD, đáy lớn CD, gọi O là giao điểm của AC và BD, các đường thẳng kẻ từ A và B lần lượt song song với BC và AD cắt đg chéo BD và AC tương ứng ở E,F.
a, chứng minh EF song song AB
b, chứng minh AB^2=EF*CD
Bạn xem lời giải của cô Huyền ở đây nhé:
Câu hỏi của Edogawa Conan - Toán lớp 8 - Học toán với OnlineMath
Tham khảo link này: https://olm.vn/hoi-dap/detail/81945110314.html
Cho hình thang ABCD, AB song song với CD có AB=7,5 cm, CD=12 cm. Gọi M là trung điểm của CD, E là giao điểm AM và BD, F là giao điểm BM và AC. Chứng minh rằng:
a, EF song song với AB
b, Tính EF
a) Ta có: AB//CD(AB và CD là hai đáy của hình thang ABCD)
nên AB//MC
Xét ΔAFB và ΔCFM có
\(\widehat{FAB}=\widehat{FCM}\)(hai góc so le trong, AB//MC)
\(\widehat{AFB}=\widehat{CFM}\)(hai góc đối đỉnh)
Do đó: ΔAFB\(\sim\)ΔCFM(g-g)
nên \(\dfrac{FA}{FC}=\dfrac{FB}{FM}=\dfrac{AB}{CM}\)
mà CM=DM(M là trung điểm của CD)
nên \(\dfrac{BF}{FM}=\dfrac{AB}{DM}\)(1)
Ta có: AB//CD(Hai cạnh đáy của hình thang ABCD)
nên AB//DM
Xét ΔABE và ΔMDE có
\(\widehat{ABE}=\widehat{MDE}\)(hai góc so le trong, AB//DM)
\(\widehat{AEB}=\widehat{MED}\)(hai góc đối đỉnh)
Do đó: ΔABE\(\sim\)ΔMDE(g-g)
nên \(\dfrac{AB}{DM}=\dfrac{AE}{EM}\)(2)
Từ (1) và (2) suy ra \(\dfrac{BF}{FM}=\dfrac{AE}{EM}\)
Xét ΔAMB có
E\(\in\)AM(Gt)
F\(\in\)BM(gt)
\(\dfrac{BF}{FM}=\dfrac{AE}{EM}\)(cmt)
Do đó: EF//AB(Định lí Ta lét đảo)
a/ Có AB // DM
=> t/g ABE đồng dạng t/g MDE (đ/l)
=> AE/ME = AB/MD = AB/MC (1)
Có AB // CM
=> t/g ABF đồng dạng t/g CMF (đ/l)
=> AF/MF = AB/CM (2)(1) ; (2)
=> AE/ME = AF/MF
Xét t/g AMB có AE/ME=AF/MF
=> EF // BC (Thales đảo)
b/ Xét t/g DEM có AB // DM
=> ME/AM = DM/AB (Hệ quả đ.l Thales)
Xét t/g AMB có EF // AB
=> ME/AM = EF/AB (Hệ quả Thales)
Do đó EF = DM = 1/2DC = 6 (cm)P/s: câu b không chắc lắm.
24
THÔNG BÁO
XEM TẤT CẢ
Hãy tham gia nhóm Học sinh Hoc24OLM
Nahida ơi bạn nhập bài muốn hỏi vào đây
Thu Anh
Thu Anh
27 tháng 1 2021 lúc 19:27
Bài 3:Cho hình thang ABCD(AB//CD) có AB = 15 cm, CD = 20 cm . Gọi M là trung điểm của CD , E là giao điểm của AM và BD . a) Chứng minh EM = 2/3 EA . b) Gọi F là giao điểm của AC và BM.Tính EF c) chứng minh AF.AM.MC = AB.AC.ME Mn giúp mk vs ạ :((
Lớp 8
Toán
NHỮNG CÂU HỎI LIÊN QUAN
Ngân Lê Bảo
Ngân Lê Bảo
30 tháng 1 2021 lúc 21:00
Cho hình thang ABCD, AB song song với CD có AB=7,5 cm, CD=12 cm. Gọi M là trung điểm của CD, E là giao điểm AM và BD, F là giao điểm BM và AC. Chứng minh rằng:
a, EF song song với AB
b, Tính EF
Xem chi tiết
Theo dõi
Báo cáo
Lớp 8
Toán
2
0
Viết câu trả lời giúp Ngân Lê Bảo
Nahida
Nguyễn Lê Phước Thịnh
Nguyễn Lê Phước Thịnh CTV
30 tháng 1 2021 lúc 21:14
a) Ta có: AB//CD(AB và CD là hai đáy của hình thang ABCD)
nên AB//MC
Xét ΔAFB và ΔCFM có
ˆ
F
A
B
=
ˆ
F
C
M
(hai góc so le trong, AB//MC)
ˆ
A
F
B
=
ˆ
C
F
M
(hai góc đối đỉnh)
Do đó: ΔAFB
∼
ΔCFM(g-g)
nên
F
A
F
C
=
F
B
F
M
=
A
B
C
M
mà CM=DM(M là trung điểm của CD)
nên
B
F
F
M
=
A
B
D
M
(1)
Ta có: AB//CD(Hai cạnh đáy của hình thang ABCD)
nên AB//DM
Xét ΔABE và ΔMDE có
ˆ
A
B
E
=
ˆ
M
D
E
(hai góc so le trong, AB//DM)
ˆ
A
E
B
=
ˆ
M
E
D
(hai góc đối đỉnh)
Do đó: ΔABE
∼
ΔMDE(g-g)
nên
A
B
D
M
=
A
E
E
M
(2)
Từ (1) và (2) suy ra
B
F
F
M
=
A
E
E
M
Xét ΔAMB có
E
∈
AM(Gt)
F
∈
BM(gt)
B
F
F
M
=
A
E
E
M
(cmt)
Do đó: EF//AB(Định lí Ta lét đ
Cho hình thang ABCD (AB // CD). Gọi M là trung điểm của CD, E là giao điểm của MA và BD, F là giao điểm của MB và AC.
a) Chứng minh EF // AB
b) Đường thẳng EF cắt AD và BC lần lượt tại M và N. Chứng minh ME=EF=FN
c) Biết AB=7,5cm; CD=12cm. tính MN
có m là trđ của cd rồi lại còn ef cắt bc tại m
a, xét tam giác DEM có AB // DM (gt) => ME/AE = DM/AB (ddl)
xét tam giác MFC có MC // AB (gt) => MF/FB = CM/AB (đl)
có DM = CM do M là trung điểm của CD (gt)
=> ME/AE = MF/FB xét tam giác ABM
=> EF // AB (đl)
b, gọi EF cắt AD;BC lần lượt tại P và Q
xét tam giác ABD có PE // AB => PE/AB = DE/DB (đl)
xét tam giác DEM có DM // AB => DE/DB = ME/MA (đl)
xét tam giác ABM có EF // AB => EF/AB = ME/MA (đl)
=> PE/AB = EF/AB
=> PE = EF
tương tự cm được FQ = EF
=> PE = EF = FQ
c, Xét tam giác DAB có PE // AB => PE/AB = DP/DA (đl)
xét tam giác ADM có PE // DM => PE/DM = AP/AD (đl)
=> PE/AB + PE/DM = DP/AD + AP/AD
=> PE(1/AB + 1/DM) = 1 (1)
xét tam giác AMB có EF // AB => EF/AB = MF/MB (đl)
xét tam giác BDM có EF // DM => EF/DM = BF/BM (đl)
=> EF/AB + EF/DM = MF/MB + BF/BM
=> EF(1/AB + 1/DM) = 1 (2)
xét tam giác ABC có FQ // AB => FQ/AB = CQ/BC (đl)
xét tam giác BMC có FQ // MC => FQ/MC = BQ/BC (đl)
=> FQ/AB + FQ/MC = CQ/BC + BQ/BC
có MC = DM (câu a)
=> FQ(1/AB + 1/DM) = 1 (3)
(1)(2)(3) => (1/AB + 1/DM)(PE + EF + FQ) = 3
=> PQ(1/AB + 1/DM) = 3
DM = 1/2 CD = 6
đến đây thay vào là ok