Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Đậu Lê Mai Linh
Xem chi tiết
Flynn
22 tháng 2 2020 lúc 22:17

Để cho A nhỏ nhất thì x=8.

=(8-8)2-2020

=02-2020

=0-2020

=-2020. 

Khách vãng lai đã xóa
Phạm Thị Thanh Thúy
Xem chi tiết
Nguyễn Ngọc
Xem chi tiết
ILoveMath
4 tháng 3 2022 lúc 16:11

\(E=\left(2x-5\right)^{10}-12\ge-12\)

Dấu "=" xảy ra \(\Leftrightarrow x=\dfrac{5}{2}\)

Vậy \(E_{min}=-12\Leftrightarrow x=\dfrac{5}{2}\)

\(F=\left(x+5\right)^8+\left|x+5\right|+22\ge22\)

Dấu "=" xảy ra \(\Leftrightarrow x=-5\)

Vậy \(F_{min}=22\Leftrightarrow x=-5\)

\(G=17-\left|3x-2\right|\)

Dấu "=" xảy ra \(x=\dfrac{2}{3}\)

Vậy ​\(G_{max}=17\Leftrightarrow x=\dfrac{2}{3}\)

\(K=17-\left|3x-2\right|-\left(2-3x\right)^{2020}\le17\)

Dấu "=" xảy ra \(\Leftrightarrow x=\dfrac{2}{3}\)

Vậy \(K_{max}=17\Leftrightarrow x=\dfrac{2}{3}\)

Nguyễn Hữu Minh
Xem chi tiết
Phạm Thị Hoài Thu
Xem chi tiết
Thanh Tùng DZ
27 tháng 4 2020 lúc 9:57

Ta có :

A = x4 - 2x2 + x2 + 2x + 1 + 2019

A = ( x2 - 1 )2 + ( x + 1 )2 + 2019 \(\ge\)2019

Vậy GTNN của A là 2019 \(\Leftrightarrow\hept{\begin{cases}x+1=0\\x^2-1=0\end{cases}\Leftrightarrow x=-1}\)

Khách vãng lai đã xóa
Trọng Nguyễn
Xem chi tiết
ILoveMath
11 tháng 11 2021 lúc 14:18

A

Lê Hoàng Lam Phương
Xem chi tiết
Nguyễn Lê Phước Thịnh
4 tháng 11 2021 lúc 22:12

\(A\ge2020\forall x,y\)

Dấu '=' xảy ra khi x=-5 và y=2021

Hồng Phong Nguyễn
Xem chi tiết
Lysr
16 tháng 3 2023 lúc 22:32

A = \(\dfrac{x^2-2x+2020}{2021x^2}\)

\(\dfrac{2020x^2-2.2020.x+2020^2}{2021.2020x^2}\)

\(=\dfrac{2019x^2}{2021.2020x^2}+\dfrac{x^2-2.2020.x+2020^2}{2021.2020x^2}\)

\(\dfrac{2019}{2021.2020}+\dfrac{\left(x-2020\right)^2}{2021.2020x^2}\ge\dfrac{2019}{2021.2020}\)

Dấu "=" xảy ra <=> x - 2020 = 0

                       <=> x = 2020

Vậy minA = \(\dfrac{2019}{2021.2020}\)đạt được tại x = 2020

Thảo
Xem chi tiết
Tạ Ngọc Diễm
Xem chi tiết
Yen Nhi
20 tháng 11 2021 lúc 22:20

Answer:

Ta áp dụng: \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\)

Dấu '' = '' xảy ra khi: \(a.b\ge0\)

\(\Rightarrow A=\left|1-x\right|+\left|x+2020\right|\ge\left|1-x+x+2020\right|=2021\)

Dấu '' = '' xảy ra khi: \(\left(1-x\right).\left(x+2020\right)\ge0\Rightarrow-2020\le x\le1\)

Vậy giá trị nhỏ nhất của biểu thức \(A=2021\) khi \(-2020\le x\le1\)

Khách vãng lai đã xóa
lê đức anh
20 tháng 11 2021 lúc 22:33

Bạn Yen Nhi: đề ghi là |x+1| nhé

Khách vãng lai đã xóa
Yen Nhi
21 tháng 11 2021 lúc 11:00

Mình làm lại bài nhé. (Bài trước nhầm đề)

Answer:

\(A=\left|x+1\right|+\left|x+2020\right|=\left|x+1\right|+\left|-x-2020\right|\)

Ta áp dụng bất đẳng thức: \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\) ta được

\(A\ge\left|x+1-x-2020\right|=\left|-2019\right|=2019\)

Dấu '' = '' xảy ra khi: \(\left(x+1\right).\left(-x-2020\right)\ge0\)

Trường hợp 1: \(\hept{\begin{cases}x+1\ge0\\-x-2020\ge0\end{cases}}\Rightarrow\hept{\begin{cases}x\ge-1\\x\le-2020\end{cases}\Rightarrow-1\le x\le-2020\left(\text{Loại}\right)}\) 

Trường hợp 2: \(\hept{\begin{cases}x+1\le0\\-x-2020\le0\end{cases}}\Rightarrow\hept{\begin{cases}x\le-1\\x\ge-2020\end{cases}}\Rightarrow-2020\le x\le-1\)

Vậy giá trị nhỏ nhất của biểu thức \(A=2019\) khi \(-2020\le x\le-1\)

Khách vãng lai đã xóa