Tìm giá trị nhỏ nhất của: A = ( x - 8 )2 - 2020
Tìm giá trị nhỏ nhất: P= ( | x-1|+2)2 + |y-z|+2020
Tìm giá trị lớn nhất: A= |x-2019|-|x-2020|
Tìm giá trị nhỏ nhất của các biểu thức sau
E=(2x – 5)10 – 12 F=(x+5)8+|x+5|+ 22
Tìm giá trị lớn nhất của các biểu thức sau
G=17-|3x-2| K= 17-|3x-2|- (2-3x)2020
\(E=\left(2x-5\right)^{10}-12\ge-12\)
Dấu "=" xảy ra \(\Leftrightarrow x=\dfrac{5}{2}\)
Vậy \(E_{min}=-12\Leftrightarrow x=\dfrac{5}{2}\)
\(F=\left(x+5\right)^8+\left|x+5\right|+22\ge22\)
Dấu "=" xảy ra \(\Leftrightarrow x=-5\)
Vậy \(F_{min}=22\Leftrightarrow x=-5\)
\(G=17-\left|3x-2\right|\)
Dấu "=" xảy ra \(x=\dfrac{2}{3}\)
Vậy \(G_{max}=17\Leftrightarrow x=\dfrac{2}{3}\)
\(K=17-\left|3x-2\right|-\left(2-3x\right)^{2020}\le17\)
Dấu "=" xảy ra \(\Leftrightarrow x=\dfrac{2}{3}\)
Vậy \(K_{max}=17\Leftrightarrow x=\dfrac{2}{3}\)
Tìm x để A đạt giá trị nhỏ nhất khi đó tính giá trị của A biết A=2020+|x nhân(1 nhân x^2)
Tìm giá trị nhỏ nhất của biểu thức: A=x^4-x^2+2x+2020
Ta có :
A = x4 - 2x2 + x2 + 2x + 1 + 2019
A = ( x2 - 1 )2 + ( x + 1 )2 + 2019 \(\ge\)2019
Vậy GTNN của A là 2019 \(\Leftrightarrow\hept{\begin{cases}x+1=0\\x^2-1=0\end{cases}\Leftrightarrow x=-1}\)
Tìm giá trị nhỏ nhất của: A = là:
A.
2 tại x = 2021
B.
-1 tại x = 2020
C.
2020 tại x = 2021
D.
1 tại x = 2022
Cho biểu thức A = (x+5)2020 \(|y-2021|\) + 2020.Tìm giá trị nhỏ nhất của A.
\(A\ge2020\forall x,y\)
Dấu '=' xảy ra khi x=-5 và y=2021
Tìm giá trị nhỏ nhất của biểu thức A = \(\dfrac{x^2-2x+2020}{2021x^2}\) với x khác 0
A = \(\dfrac{x^2-2x+2020}{2021x^2}\)
= \(\dfrac{2020x^2-2.2020.x+2020^2}{2021.2020x^2}\)
\(=\dfrac{2019x^2}{2021.2020x^2}+\dfrac{x^2-2.2020.x+2020^2}{2021.2020x^2}\)
= \(\dfrac{2019}{2021.2020}+\dfrac{\left(x-2020\right)^2}{2021.2020x^2}\ge\dfrac{2019}{2021.2020}\)
Dấu "=" xảy ra <=> x - 2020 = 0
<=> x = 2020
Vậy minA = \(\dfrac{2019}{2021.2020}\)đạt được tại x = 2020
tìm giá trị nhỏ nhất của hàm số sau:
a) F(x)=x2+2020
b) G(x)=|2x-4|+2020
Answer:
Ta áp dụng: \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\)
Dấu '' = '' xảy ra khi: \(a.b\ge0\)
\(\Rightarrow A=\left|1-x\right|+\left|x+2020\right|\ge\left|1-x+x+2020\right|=2021\)
Dấu '' = '' xảy ra khi: \(\left(1-x\right).\left(x+2020\right)\ge0\Rightarrow-2020\le x\le1\)
Vậy giá trị nhỏ nhất của biểu thức \(A=2021\) khi \(-2020\le x\le1\)
Bạn Yen Nhi: đề ghi là |x+1| nhé
Mình làm lại bài nhé. (Bài trước nhầm đề)
Answer:
\(A=\left|x+1\right|+\left|x+2020\right|=\left|x+1\right|+\left|-x-2020\right|\)
Ta áp dụng bất đẳng thức: \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\) ta được
\(A\ge\left|x+1-x-2020\right|=\left|-2019\right|=2019\)
Dấu '' = '' xảy ra khi: \(\left(x+1\right).\left(-x-2020\right)\ge0\)
Trường hợp 1: \(\hept{\begin{cases}x+1\ge0\\-x-2020\ge0\end{cases}}\Rightarrow\hept{\begin{cases}x\ge-1\\x\le-2020\end{cases}\Rightarrow-1\le x\le-2020\left(\text{Loại}\right)}\)
Trường hợp 2: \(\hept{\begin{cases}x+1\le0\\-x-2020\le0\end{cases}}\Rightarrow\hept{\begin{cases}x\le-1\\x\ge-2020\end{cases}}\Rightarrow-2020\le x\le-1\)
Vậy giá trị nhỏ nhất của biểu thức \(A=2019\) khi \(-2020\le x\le-1\)