Cho tam giác ABC, đường cao AH.
a) chứng minh △HBA đồng dạng với △ABC rồi suy ra BH.AC = AB.AH
b)Tia phân giác góc ABC giao AH tại I, biết BH = 3cm, AB = 5cm. Tìm AI, IH
c)Tia phân giác góc HAC giao BC tại K, chứng minh IK // AC
Help câu c :((
Cho tam giác ABC vuông tại A, đường cao AH.
a) Chứng minh tam giác ABC đồng dạng với tam giác HBA, từ đó suy ra AB.AH = BH.AC
b) Tia phân giác của góc ABC cắt AH tại I. Biết BH = 3cm, AB = 5cm. Tính AI,HI
c) Tia phân giác góc HAC cắt BC tại K. Chứng minh IK // AC
tự kẻ hình
a, xét tam giác ABC và tam giác HBA có : góc B chung
góc BAC = góc BHA = 90
=> tam giác ABC đồng dạng với tam giác HBA (g-g)
=> AB/BH = AC/AH
=> AB.AH = BH.AC
b, xét tam giác BAH vuông tại H => HB^2 + HA^2 = AB^2 (Pytago)
BH = 3; AB = 5(gt)
=> 3^2 + AH^2 = 5^2
=> AH^2 = 16
=> AH = 4 do AH > 0
xét tam giác ABH có : BI là pg của góc ABH (gt)
=> AI/AB = IH/BH (tính chất)
=> AI+IH/AB+BH = AI/AB = IH/BH
=> AH/AB + BH = AI/AB = IH/BH
có: AH = 4; AB = 5; BH = 3
=> 4/3+5 = AI/5 = IH/3
=> AI/5 = IH/3 = 1/2
=> AI = 5/2 và IH = 3/2
c, góc CAH = 90 - góc HAB
góc HBA = 90 - góc HAB
=> góc CAH = góc HBA
xét tam giác AHC và tam giác BHA có: góc AHC = góc BHA = 90
=> tam giác AHC đồng dạng với tam giác BHA (g-g)
=> AC/AB = AH/HB
=> AC/AH = AB/HB
BI là pg của tam giác AHB => AI/AH = AB/AB
CK là pg của tam giác AHC => CK/KH = AC/AH
=> AI/AH = CK/KH
=> KI // AC
Cho tam giác ABC vuông tại A, đường cao AH.
a) Chứng minh tam giác ABC đồng dạng với tam giác HBA, từ đó suy ra AB.AH = BH.AC
b) Tia phân giác của góc ABC cắt AH tại I. Biết BH = 3cm, AB = 5cm. Tính AI,HI
c) Tia phân giác góc HAC cắt BC tại K. Chứng minh IK// AC
làm hộ mk nha
Cho tam giác ABC vuông tại A, đường cao AH
a) CM: tam giác ABC đồng dạng tam giác HBA, từ đó suy ra: AB.AH = BH.AC
b) Tia phân giác góc ABC cắt AH tại I (i). Biết BH=3cm; AB=5cm. Tính AI (ai), IH (ih)
c) Tính diện tích tam giác AHB
Cho ΔABC vuông tại A, đường cao AH.
a) Chứng minh đồng dạng với ΔHBA, từ đó suy ra AB.AH=BH.AC
b) Tia phân giác của góc ABC^ cắt AH tại I. Biết BH = 3cm, AB = 5 cm. Tính AI, HI
c) Tia phân giác góc HAC^ cắt BC tại K. Chứng minh IK // AC.
d) Gọi M là giao điểm của AK và IC, N là trung điểm của AC. Chứng minh: H, M, N thẳng hàng
a) Xét \(\Delta ABC\)và \(\Delta HBA\)có
\(\widehat{A}=\widehat{H}=90^o\)
\(\widehat{B}\)là góc chung
\(\Rightarrow\Delta ABC~\Delta HBA\left(g.g\right)\)
\(\Leftrightarrow\frac{AB}{BH}=\frac{AC}{AH}\Leftrightarrow AB.AH=BH.AC\left(đpcm\right)\)
b) Xét \(\Delta HBA\)vuông tại H theo định lý PYTAGO ta co
\(\Rightarrow HA=\sqrt{AB^2-BH^2}=\sqrt{5^2-3^2}=4\left(cm\right)\)
Vì BI là phân giác của góc ABH
\(\Rightarrow\frac{AI}{AB}=\frac{IH}{BH}\Leftrightarrow\frac{AI}{5}=\frac{IH}{3}\)và AI + IH = HA = 4
Theo tính chất dãy tỉ số bằng nhau ta có
\(\frac{AI}{5}=\frac{IH}{3}=\frac{AI+IH}{5+3}=\frac{4}{8}=\frac{1}{2}\)
\(\Rightarrow\hept{\begin{cases}\frac{AI}{5}=\frac{1}{2}\Leftrightarrow AI=\frac{5.1}{2}=2,5\left(cm\right)\\\frac{IH}{3}=\frac{1}{2}\Leftrightarrow IH=\frac{3.1}{2}=1,5\left(cm\right)\end{cases}}\)
c) Xét tam giác CHA và tam giác AHB
\(\widehat{H}=\widehat{H}=90^o\)
\(\widehat{A}=\widehat{B}\)( cùng phụ góc C)
=> Tam giác CHA ~ tam giác AHB (gg)
\(\Rightarrow\frac{AC}{AB}=\frac{AH}{HB}\Leftrightarrow\frac{AC}{AH}=\frac{AB}{HB}\)(*)
Vì BI là phân giác của tam giác AHB
\(\Leftrightarrow\frac{AI}{AH}=\frac{AB}{BH}\left(1\right)\)
Vì CK là phân giác của tam giác AHC
\(\Leftrightarrow\frac{CK}{KH}=\frac{AC}{AH}\left(2\right)\)
Từ (1), (2) và (*)
\(\Rightarrow\frac{AI}{AH}=\frac{CK}{KH}\Leftrightarrow KI//AC\left(taletdao\right)\)
d) Gọi N là giao điểm của HM và AC
=> bài toán trở thành chứng minh N là trung điểm
bạn ơi đề cho N là trung điểm rồi mà sao phải chứng minh
trả lời mình đi mình k cho bạn rồi mà
Cho tam giá ABC vuông tại A, đường cao AH.
a) Chứng minh hai tam giác ABC và HBA đồng dạng với nhau, từ đó suy ra AB2= BH. BC
b) Tia phân giác cắt AH tại I, Chứng minh rằng IA/IH = AC/HA
c) Tia phân giác của góc HAC cắt BC tại K. Chứng minh IK // AC.
Giúp mình với mình đang cần gấp ạ
a) Xét ΔABC vuông tại A và ΔHBA vuông tại H có
\(\widehat{ABH}\) chung
Do đó: ΔABC\(\sim\)ΔHBA(g-g)
Suy ra: \(\dfrac{BA}{BH}=\dfrac{BC}{BA}\)(Các cặp cạnh tuong ứng tỉ lệ)
hay \(AB^2=BH\cdot BC\)(đpcm)
b) Xét ΔCHA vuông tại H và ΔAHB vuông tại H có
\(\widehat{HAC}=\widehat{HBA}\left(=90^0-\widehat{C}\right)\)
Do đó: ΔCHA\(\sim\)ΔAHB(g-g)
Suy ra: \(\dfrac{CA}{AB}=\dfrac{HA}{HB}\)(Các cặp cạnh tương ứng tỉ lệ)
hay \(\dfrac{AC}{HA}=\dfrac{AB}{BH}\)(1)
Xét ΔHBA có BI là đường phân giác ứng với cạnh AH(gt)
nên \(\dfrac{IA}{IH}=\dfrac{AB}{BH}\)(2)
Từ (1) và (2) suy ra \(\dfrac{IA}{IH}=\dfrac{AC}{HA}\)(3)
c) Xét ΔAHC có AK là đường phân giác ứng với cạnh CH(gt)
nên \(\dfrac{CK}{KH}=\dfrac{AC}{HA}\)(4)
Từ (3) và (4) suy ra \(\dfrac{CK}{KH}=\dfrac{AI}{IH}\)
hay KI//AC(Định lí Ta lét đảo)
Cho ∆ABC vuông tại A, đường cao AH.
a) Chứng minh ∆ABC đồng dạng với ∆HBA, từ đó suy ra AB2 = BH.BC.
b) Tia phân giác của góc ABC cắt AH tại I. Chứng minh rằng: IA/IH=AC/HA
c) Tia phân giác của góc HAC cắt BC tại K. Chứng minh IK song song với AC.
em nào có nhu cầu bú lồn thì liên hệ anh nha
cho tam giác ABC vuông tại A , đường cao AH
a. Chứng minh DABC đồng dạng với DHBA, từ đó suy ra AB bình= BH.BC
b. Tia phân giác của góc ABC cắt AH tại I, chứng minh rằng IA/IH=AC/HA
c. Tia phân giác của góc HAC cắt BC tại K, chứng minh rằng IK song song với AC
a. Xét tam giác ABC và tam giác HBA có:
góc A= góc H= 90o
góc B chung
=> tam giác ABC ~ tam giác HBA (g.g)
=> \(\dfrac{AB}{BC}\)=\(\dfrac{BH}{AB}\)
=> AB2= BH.BC
Mn giải giúp em với ạ em cảm ơn rất nhiều ạ Cho tam giác vuông góc tại A,đường cao AH, AB=15cm,BC=25cm,BH=9cm a.CM tam giác ABC đồng dạng tam giác HBA và AB.AH=BH.AC b.Phân giác của ^ABC cắt AH tại I, Tính AI và HI c.Phân giác của ^HAC cắt BC tại K. CM IK//AC (có gt kl giups em vs ạ)
a: XétΔABC vuông tại A và ΔHBA vuông tại H có
góc B chung
=>ΔABC đồng dạng với ΔHBA
b: \(AH=\sqrt{15^2-9^2}=12\left(cm\right)\)
BI là phân giác của góc ABH
=>IA/AB=IH/BH
=>IA/5=IH/3=(IA+IH)/(5+3)=12/8=1,5
=>IA=7,5cm; IH=4,5cm
c: góc BAK+góc CAK=90 độ
góc BKA+góc HAK=90 độ
mà góc CAK=góc HAK
nên góc BAK=góc BKA
=>BI vuông góc AK
Xet ΔBAK có
BI,AI là đường cao
=>I là trực tâm
=>IK vuông góc AB
=>IK//AC
cho tam giác ABC vuông tại A (AB<AC), đường cao AH a, CM tgiac ABC đồng dạng với tgiac HBA từ đó suy ra AB.AB=BC.BH, AB.AC=BC.AH b, CM tgiac ABC đồng dạng với tgiac HAC từ đó suy ra AC.AC=BC.CH c, tia phân giác của góc ABC cắt AH tại K, cắt AC tại I. CM: tgiac ABK đồng dạng tgiac CBI d, CM AI/IC=KH/AK