Cho x,y khác 0. CMR: \(\frac{x^2}{y^2}+\frac{y^2}{x^2}\ge\frac{x}{y}+\frac{y}{x}\)
Cho x, y khác 0 CMR:
\(\frac{x^2}{y^2}+\frac{y^2}{x^2}\ge\frac{x}{y}+\frac{y}{x}\)
Bổ xung ĐK : x;y > 0
Cần chứng minh : \(\frac{x}{y}+\frac{y}{x}-2\ge0\Leftrightarrow\frac{x^2+y^2-2xy}{xy}=\frac{\left(x-y\right)^2}{xy}\ge0\)(đúng với x;y>0)
\(\frac{x^2}{y^2}+\frac{y^2}{x^2}\ge\frac{x}{y}+\frac{y}{x}\)
\(\Leftrightarrow\frac{x^2}{y^2}+\frac{y^2}{x^2}+2\ge\frac{x}{y}+\frac{y}{x}+2\)
\(\Leftrightarrow\left(\frac{x}{y}+\frac{y}{x}\right)^2\ge\frac{x}{y}+\frac{y}{x}+2\)
\(\Leftrightarrow\left(\frac{x}{y}+\frac{y}{x}\right)^2-\left(\frac{x}{y}+\frac{y}{x}\right)-2\ge0\)
\(\Leftrightarrow\left(\frac{x}{y}+\frac{y}{x}-2\right)\left(\frac{x}{y}+\frac{y}{x}+1\right)\ge0\)(đúng vì \(\frac{x}{y}+\frac{y}{x}-2\ge0\)theo cmt)
Vậy \(\frac{x^2}{y^2}+\frac{y^2}{x^2}\ge\frac{x}{y}+\frac{y}{x}\)
áp dụng bất đẳng thức AM-GM ta có
x2/y2+1>=2x/y
y2/x2+1>=2y/x x/y+y/x>=2(1)
cộng cả hai vế ta có x2/y2+y2/x2 + 2>=2x/y+2y/x
kết hợp với (1)=>dpcm
Cho xy khác 0. CMR: \(\frac{x^2}{y^2}+\frac{y^2}{x^2}\ge\frac{x}{y}+\frac{y}{x}\)
cho x,y khác 0, CMR :
\(\frac{1}{2}\left(\frac{x^{10}}{y^2}+\frac{y^{10}}{x^2}\right)+\frac{1}{4}\left(x^{16}+y^{16}\right)-\left(1+x^2y^2\right)\ge\frac{-5}{2}\)
gọi A là VT
Ta có : \(A=\left[\frac{1}{2}\left(\frac{x^{10}}{y^2}+\frac{y^{10}}{x^2}\right)-x^4y^4\right]+\left[\frac{1}{4}\left(x^{16}+y^{16}\right)-2x^2y^2\right]-1\)
Áp dụng BĐT Cô-si,ta có :
\(\frac{1}{2}\left(\frac{x^{10}}{y^2}+\frac{y^{10}}{x^2}\right)\ge\frac{1}{2}2\sqrt{\frac{x^{10}}{y^2}.\frac{y^{10}}{x^2}}=x^4y^4\Rightarrow\frac{1}{2}\left(\frac{x^{10}}{y^2}+\frac{y^{10}}{x^2}\right)-x^4y^4\ge0\)
\(\frac{x^{16}+y^{16}}{4}\ge\frac{x^8y^8}{2}=\left(\frac{x^8y^8}{2}+\frac{1}{2}+\frac{1}{2}+\frac{1}{2}\right)-\frac{3}{2}\ge4\sqrt[4]{\frac{x^8y^8}{16}}-\frac{3}{2}==2x^2y^2-\frac{3}{2}\)
\(\Rightarrow\frac{1}{4}\left(x^{16}+y^{16}\right)-2x^2y^2\ge\frac{-3}{2}\)
Từ đó ta có : \(A\ge0-\frac{3}{2}-1=\frac{-5}{2}\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}x=y\\x^2y^2=1\end{cases}\Leftrightarrow x=y=\pm1}\)
Cho x, y khác 0
CMR: \(\frac{x^6}{y^2}+\frac{y^6}{x^2}\ge x^4+y^4\)
Cho x,y,z >0. CMR: \(\frac{x^2}{y+z}+\frac{y^2}{x+z}+\frac{z^2}{x+y}\ge\frac{x+y+z}{2}\)
Cho x, y > 0. CMR: \(\frac{x^2}{y}+\frac{y^2}{x}\ge x+y\)
\(\Leftrightarrow x^3+y^3\ge xy\left(x+y\right)\)
\(\Leftrightarrow x^3-x^2y+y^3-xy^2\ge0\)
\(\Leftrightarrow x^2\left(x-y\right)-y^2\left(x-y\right)\ge0\)
\(\Leftrightarrow\left(x^2-y^2\right)\left(x-y\right)\ge0\)
\(\Leftrightarrow\left(x-y\right)^2\left(x+y\right)\ge0\) (luôn đúng với x;y dương)
Vậy BĐT đã cho đúng
Dấu "=" xảy ra khi \(x=y\)
Cho \(x\ge y\ge z>0.CMR:\frac{x^2y}{2}+\frac{y^2z}{2}+\frac{z^2x}{2}\ge\left(x^2+y^2+z^2\right)^2\)
Cho x,y,z>0.Cmr
\(\frac{x^2}{y^2}+\frac{y^2}{z^2}+\frac{z^2}{x^2}\ge\frac{x}{y}+\frac{y}{z}+\frac{z}{x}\)
cho x,y,z > 0 . Cmr: \(\frac{x^4}{y^2\left(x+z\right)}+\frac{y^4}{z^2\left(x+y\right)}+\frac{z^4}{x^2\left(y+z\right)}\ge\frac{x+y+z}{2}\)
Áp dụng bất đẳng thức Cauchy :
\(\frac{x^4}{y^2\left(x+z\right)}+\frac{y^2}{2x}+\frac{x+z}{4}\ge3\sqrt[3]{\frac{x^4\cdot y^2\cdot\left(x+z\right)}{y^2\cdot\left(x+z\right)\cdot2x\cdot4}}=3\sqrt[3]{\frac{x^3}{8}}=\frac{3x}{2}\)
Tương tự ta cũng có :
\(\frac{y^4}{z^2\left(x+y\right)}+\frac{z^2}{2y}+\frac{x+y}{4}\ge\frac{3y}{2}\)
\(\frac{z^4}{x^2\left(y+z\right)}+\frac{x^2}{2z}+\frac{y+z}{4}\ge\frac{3z}{2}\)
Cộng theo vế ta được :
\(VT+\left(\frac{y^2}{2x}+\frac{z^2}{2y}+\frac{x^2}{2z}\right)+\frac{2\left(x+y+z\right)}{4}\ge\frac{3x}{2}+\frac{3y}{2}+\frac{3z}{2}\)
\(\Leftrightarrow VT+\frac{1}{2}\left(\frac{y^2}{x}+\frac{z^2}{y}+\frac{x^2}{z}\right)+\frac{1}{2}\left(x+y+z\right)\ge\frac{3}{2}\left(x+y+z\right)\)
\(\Leftrightarrow VT+\frac{1}{2}\cdot\frac{\left(x+y+z\right)^2}{x+y+z}+\frac{1}{2}\left(x+y+z\right)\ge\frac{3}{2}\left(x+y+z\right)\)
\(\Leftrightarrow VT+\frac{1}{2}\left(x+y+z\right)+\frac{1}{2}\left(x+y+z\right)\ge\frac{3}{2}\left(x+y+z\right)\)
\(\Leftrightarrow VT\ge\frac{x+y+z}{2}\)
Dấu "=" xảy ra \(\Leftrightarrow x=y=z\)
Lời giải:
Áp dụng BĐT Cauchy-Schwarz:
\(\text{VT}=\frac{(\frac{x^2}{y})^2}{x+z}+\frac{(\frac{y^2}{z})^2}{x+y}+\frac{(\frac{z^2}{x})^2}{y+z}\geq \frac{\left(\frac{x^2}{y}+\frac{y^2}{z}+\frac{z^2}{x}\right)^2}{x+z+x+y+y+z}\)
Tiếp tục áp dụng:
\(\frac{x^2}{y}+\frac{y^2}{z}+\frac{z^2}{x}\geq \frac{(x+y+z)^2}{y+z+x}=x+y+z\)
Do đó: \(\text{VT}\geq \frac{(x+y+z)^2}{x+z+x+y+y+z}=\frac{x+y+z}{2}\) (đpcm)
Dấu "=" xảy ra khi $x=y=z$