Cho góc nhọn xoy . Lấy điểm A,B thuộc Ox sao cho OA<OB ; lấy các điểm C,D thuộc tia Oy sao cho OA=OC và OB=OD .Gọi K là giao điểm của AD và BC
a . Cmr : tgiac OAD = OCB
b . KB=KD
c . OK là tia phân giác góc xoy
d . AC // BD
a: Xét ΔOAD và ΔOCB có
OA=OC
góc AOD chung
OD=OB
=>ΔOAD=ΔOCB
=>AD=CB
b: Xét ΔEAB và ΔECD có
góc EAB=góc ECD
AB=CD
góc EBA=góc EDC
=>ΔEAB=ΔECD
c: Xét ΔOAE và ΔOCE có
OA=OC
AE=CE
OE chung
=>ΔOAE=ΔOCE
=>góc AOE=góc COE
=>góc AOM=góc CON
Xét ΔCON và ΔAOM có
góc CON=góc AOM
CO=AO
góc OCN=góc OAM
=>ΔCON=ΔAOM
=>ON=OM
=>ΔENM can tại E
=>EM=EN
=>NC=MA
Xét ΔEMB và ΔEND có
EM=EN
góc MEB=góc NED
EB=ED
=>ΔEMB=ΔEND
=>ND=MB và góc EMB=góc END
=>góc KMO=góc KNO
=>ΔKMN cân tại K
KD+DN=KN
KB+BM=KM
mà KM=KN; DN=BM
nên KD=KB
=>K nằm trên trung trực của DB(1)
OB=OD
nên O nằm trên trung trực của DB(2)
EB=ED
nên E nằm trên trung trực của DB(3)
Từ (1), (2), (3) suy ra O,E,K thẳng hàng
Cho góc nhọn xOy , lấy điểm A,B thuộc tia Ox sao cho OA <OB , lấy điểm C,D thuộc tia Oy sao cho OA<OB , lấy điểm C , D thuộc tia Oy sao cho OC=OA , OD = OB . Gọi E là giao điểm của AD
a, Cm AD=BC
B, CM TAM GIÁC EAB=TAM GIÁC ECD
C, ĐƯỜNG THẲNG VUỐNG GÓC VỚI OE TẠI O CẮT AD TẠI M VÀ BC TẠI N .GỌI K LÀ GIAO DIỂM CỦA MB VÀ ND . CMR BA ĐIỂM O,E,K THẲNG HÀNG
a: Xet ΔOAD và ΔOCB có
OA=OC
góc O chung
OD=OB
=>ΔOAD=ΔOCB
=>AD=CB
b: Xét ΔEAB và ΔECD có
góc EAB=góc ECD
AB=CD
góc EBA=góc EDC
=>ΔEAB=ΔECD
Cho góc nhọn xOy , lấy điểm A,B thuộc tia Ox sao cho OA <OB , lấy điểm C,D thuộc tia Oy sao cho OA<OB , lấy điểm C , D thuộc tia Oy sao cho OC=OA , OD = OB . Gọi E là giao điểm của AD
a, Cm AD=BC
B, CM TAM GIÁC EAB=TAM GIÁC ECD
C, ĐƯỜNG THẲNG VUỐNG GÓC VỚI OE TẠI O CẮT AD TẠI M VÀ BC TẠI N .GỌI K LÀ GIAO DIỂM CỦA MB VÀ ND . CMR BA ĐIỂM O,E,K THẲNG HÀNG
https://hoc24.vn/cau-hoi/cho-goc-nhon-xoy-lay-diem-ab-thuoc-tia-ox-sao-cho-oa-ob-lay-diem-cd-thuoc-tia-oy-sao-cho-oaob-lay-diem-c-d-thuoc-tia-oy-sao-cho-ocoa-od.7621651044223
có ng trả lời cho bn rùi mà
a: Xét ΔOAD và ΔOCB có
OA=OC
góc AOD chung
OD=OB
=>ΔOAD=ΔOCB
=>AD=CB
b: Xét ΔEAB và ΔECD có
góc EAB=góc ECD
AB=CD
góc EBA=góc EDC
=>ΔEAB=ΔECD
c: Xét ΔOAE và ΔOCE có
OA=OC
AE=CE
OE chung
=>ΔOAE=ΔOCE
=>góc AOE=góc COE
=>góc AOM=góc CON
Xét ΔCON và ΔAOM có
góc CON=góc AOM
CO=AO
góc OCN=góc OAM
=>ΔCON=ΔAOM
=>ON=OM
=>ΔENM can tại E
=>EM=EN
=>NC=MA
Xét ΔEMB và ΔEND có
EM=EN
góc MEB=góc NED
EB=ED
=>ΔEMB=ΔEND
=>ND=MB và góc EMB=góc END
=>góc KMO=góc KNO
=>ΔKMN cân tại K
KD+DN=KN
KB+BM=KM
mà KM=KN; DN=BM
nên KD=KB
=>K nằm trên trung trực của DB(1)
OB=OD
nên O nằm trên trung trực của DB(2)
EB=ED
nên E nằm trên trung trực của DB(3)
Từ (1), (2), (3) suy ra O,E,K thẳng hàng
a: Xét ΔOAC và ΔOBC có
OA=OB
\(\widehat{AOC}=\widehat{BOC}\)'
OC chung
Do đó: ΔOAC=ΔOBC
=>AC=BC và \(\widehat{OAC}=\widehat{OBC}\)
\(\widehat{OAC}+\widehat{xAC}=180^0\)(hai góc kề bù)
\(\widehat{OBC}+\widehat{yBC}=180^0\)(hai góc kề bù)
mà \(\widehat{OAC}=\widehat{OBC}\)
nên \(\widehat{xAC}=\widehat{yBC}\)
b: OA=OB
=>O nằm trên đường trung trực của AB(1)
CA=CB
=>C nằm trên đường trung trực của AB(2)
Từ (1) và (2) suy ra OC là đường trung trực của AB
=>OC\(\perp\)AB
=>Oz\(\perp\)AB
Cho góc xoy nhọn. Trên ox lấy điểm A trên oy lấy điểm B sao cho OA=OB. Lấy hai điểm M,N đều thuộc miền trong của góc xoy sao cho MA=MB , NA=NB.
A) Chứng minh rằng OM là tia phân giác của góc xoy.
B) Chứng minh rằng ba điểm O,M,N thẳng hàng.
C) Chứng minh MN là tia phân giác của góc AMB.
Cho góc nhọn xOy, lấy điểm A thuộc Ox, điểm B thuộc Oy sao cho OA=OB. Kẻ AH vuông góc với Oy và BK vuông góc với Ox.
a) Chứng minh tam giác OHK cân.
b) Gọi I là giao điểm của AH và BK. Chứng minh OI là tia phân giác của góc xOy.
a) Xét Tàm giác vuông OBK và Tam giác vuông OAH có :
OA = OB (GT)
<O chung
=> Tam giác vuông OBK = Tam giác vuông OAH ( cạnh góc vuông - góc nhọn kề )
=> OH = OK (2CTU)
Xét Tam giác OHK có :
OH = OK
=> Tam giác OHK cân tại O (dpcm)
b) Vì Tam giác OBK và Tam giác OAH (cmt)
=> <OKB = <OHA (2GTU)
TC : OH = OK (cmt)
OA = OB (GT)
mà OH = OB + BH
OK = OA + AK
=> AK = BH
Xét Tam giác vuông AIK và Tam giác vuông BIH
AK = BH
<OKB = <OHA
=> Tam giác vuông AIK = Tam giác vuông BIH ( cạnh góc vuông - góc nhọn kề)
=> AI = BI (2CTU)
Xét Tam giác OAI = Tam giác OBI có :
OA = OB (GT)
OI chung
AI = BI (cmt)
=> Tam giác OAI = Tam giác OBI (c.c.c)
=> <AOI = <BOI (2GTU)
=> OI là tia phân giác của <xOy (dpcm)
Cho góc nhọn xoy cố định. Lấy A thuộc Ox và B thuộc Oy sao cho OA=OB tìm tập hợp trung điểm i của AB khi OA,OB cùng thay đổi nhưng vẫn có OA=OB
Câu 4: cho góc nhọn xoy, Trên Ox lấy điểm A. Trên Oy lấy điểm B sao cho OA = OB. Kẻ AC vuông góc Oy ( C thuộc Oy), BD vuông góc Ox ( D thuộc Ox). I là giao điểm của AC và BD.
a)Chứng minh tam giác AOC = tam giác BOD.
b) chứng minh tam giác AID = tam giác BIC.
c) So sánh IC và IA.
a) Xét ΔAOC vuông tại C và ΔBOD vuông tại D có
OA=OB(gt)
\(\widehat{AOC}\) chung
Do đó: ΔAOC=ΔBOD(cạnh huyền-góc nhọn)