Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
nguyen ngoc son
Xem chi tiết
Akai Haruma
2 tháng 1 2021 lúc 17:52

Lời giải:

$A=5x^2+y^2+4xy-2x-2y+2020$

$=(4x^2+y^2+4xy)+x^2-2x-2y+2020$

$=(2x+y)^2-2(2x+y)+x^2+2x+2020$

$=(2x+y)^2-2(2x+y)+1+(x^2+2x+1)+2018$

$=(2x+y-1)^2+(x+1)^2+2018\geq 2018$

Vậy GTNN của $A$ là $2018$. Giá trị này đạt tại $2x+y-1=0$ và $x+1=0$

Hay $x=-1; y=3$

nguyen ngoc son
Xem chi tiết
Đoàn Thành Trung
Xem chi tiết
Nguyễn Khang
18 tháng 8 2019 lúc 9:05

Anh/ chị viết rõ đề bằng công thức toán được không ạ?

Vd : 1/2(2x+2y+z)^2 là \(\frac{1}{2\left(2x+2y+z\right)^2}\) hay sao?

\(P=8x^3+8y^3+\frac{z^3}{\left(2x+2y+2z\right)\left(4xy+2yz+2zx\right)}\) đúng ko ạ?

Hòa Huỳnh
Xem chi tiết
Minh Hiếu
27 tháng 1 2022 lúc 8:56

H=\(x^6-2x^3+x^2-2x+2\)

\(=x^6+2x^5+3x^4+2x^2-2x^5-4x^4-6x^3-4x^2-4x+x^4+2x^3+3x^2+2x+2\)

\(=x^2\left(x^4+2x^3+3x^2+2\right)-2x\left(x^4+2x^3+3x^2+2\right)+\left(x^4+2x^3+3x^2+2\right)\)

\(=\left(x^2-2x+1\right)\left(x^4+2x^3+3x^2+2\right)\)

\(=\left(x-1\right)^2\left(x^2+1\right)\left(x^2+2x+2\right)\)

\(=\left(x-1\right)^2\left(x^2+1\right)\left[\left(x+1\right)^2+1\right]\text{≥}0\)

Vì \(\left\{{}\begin{matrix}\left(x-1\right)^2\text{≥}0\\\left(x^2+1\right)\text{≥}1\\\left(x+1\right)^2+1\text{≥}1\end{matrix}\right.\)

⇒ MinH=0 ⇔ \(x=1\)

Cường
Xem chi tiết
Nguyễn Huy Tú
7 tháng 9 2021 lúc 15:03

\(x^2+4y^2-5x+10y-4xy+20\)

\(=x^2-4xy+4y^2-2.\frac{5}{2}\left(x-2y\right)+\frac{25}{4}-\frac{25}{4}+20\)

\(=\left(x-2y\right)^2-2.\frac{5}{2}\left(x-2y\right)+\frac{25}{4}+\frac{55}{4}\)

\(=\left(x-2y-\frac{5}{2}\right)^2+\frac{55}{4}\)Thay x - 2y = 5 ta được : 

\(=\left(5-\frac{5}{2}\right)^2+\frac{55}{4}=20\)

Khách vãng lai đã xóa
Nguyễn Huy Tú
7 tháng 9 2021 lúc 15:05

\(B=x^2-2xy-2x+2y+y^2\)

\(=x^2-2xy+y^2-2\left(x-y\right)\)

\(=\left(x-y\right)^2-2\left(x-1\right)\)Thay x = y + 1 => x - y = 1 ta được : 

\(=1-2=-1\)

Khách vãng lai đã xóa
Nguyễn Thị Như Ái 8_
Xem chi tiết
Nguyễn Việt Lâm
6 tháng 2 2020 lúc 19:19

\(M=4x^2+y^2+1+4xy+4x+2y+6x^2-6x+1\)

\(M=\left(2x+y+1\right)^2+6\left(x-\frac{1}{2}\right)^2-\frac{1}{2}\ge-\frac{1}{2}\)

Dấu "=" xảy ra khi: \(\left\{{}\begin{matrix}x-\frac{1}{2}=0\\2x+y+1=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=\frac{1}{2}\\y=-2\end{matrix}\right.\)

Khách vãng lai đã xóa
Nguyễn Huy Dũng
Xem chi tiết
Minh Anh
25 tháng 9 2016 lúc 19:08

\(A=10x^2+6xy+y^2-4x+3\)

\(A=9x^2+6xy+y^2+x^2-4x+4-1\)

\(A=\left(3x+y\right)^2+\left(x-2\right)^2-1\)

Có: \(\left(3x+y\right)^2+\left(x-2\right)^2\ge0\)

\(\Rightarrow\left(3x+y\right)^2+\left(x-2\right)^2-1\ge-1\)

Dấu = xảy ra khi: \(\left(3x+y\right)^2+\left(x-2\right)^2=0\)

\(\Rightarrow\hept{\begin{cases}\left(3x+y\right)^2=0\\\left(x-2\right)^2=0\end{cases}}\Rightarrow\hept{\begin{cases}3x+y=0\\x-2=0\end{cases}}\Rightarrow\hept{\begin{cases}3x+y=0\\x=2\end{cases}}\Rightarrow\hept{\begin{cases}6+y=0\\x=2\end{cases}}\Rightarrow\hept{\begin{cases}y=-6\\x=2\end{cases}}\)

Vậy: \(Min_A=-1\) tại \(\hept{\begin{cases}y=-6\\x=2\end{cases}}\)

Uyên Hoàng Tố
Xem chi tiết
Ngọc Linh Hoàng
Xem chi tiết