So sánh (làm bằng cách tự luận):
\(\sqrt[3]{7}+\sqrt{15}và\sqrt{10}+\sqrt[3]{28}\)
so sánh
\(a.3\sqrt{26}\) và 15
\(b.-5\sqrt{35}\) và 30
c.\(\sqrt{34-10\sqrt{3}}\) và 5-\(\sqrt{3}\)
d.\(\sqrt{16+225}\) và \(\sqrt{16}+\sqrt{225}\)
1) so sánh
a) \(\sqrt{33}-\sqrt{17}\) và \(6-\sqrt{15}\)
b) \(4\sqrt{5}\) và \(5\sqrt{3}\)
c) \(\sqrt{3\sqrt{2}}\) và \(\sqrt{2\sqrt{3}}\)
d) \(\sqrt{10}+\sqrt{17}+1\) và \(\sqrt{61}\)
giúp mk vs ah mk cần gấp
b: Ta có: \(4\sqrt{5}=\sqrt{4^2\cdot5}=\sqrt{80}\)
\(5\sqrt{3}=\sqrt{5^2\cdot3}=\sqrt{75}\)
mà 80>75
nên \(4\sqrt{5}>5\sqrt{3}\)
sắp xếp theo thứ tự giảm dần
a.\(7\sqrt{2}\);\(2\sqrt{8}\);\(\sqrt{28}\)và \(5\sqrt{2}\)
b.\(3\sqrt{10}\);\(5\sqrt{3}\);\(\dfrac{20}{\sqrt{ }5}\)và 12\(\sqrt{\dfrac{2}{3}}\)
a)
\(7\sqrt{2}=\sqrt{49.2}=\sqrt{98}\\ 2\sqrt{8}=\sqrt{4.8}=\sqrt{32}\\ 5\sqrt{2}=\sqrt{25.2}=\sqrt{50}\)
Do 98 > 50 > 32 > 28 nên \(\sqrt{98}>\sqrt{50}>\sqrt{32}>\sqrt{28}\)
=> \(7\sqrt{2}>5\sqrt{2}>2\sqrt{8}>\sqrt{28}\)
b)
\(3\sqrt{10}=\sqrt{9.10}=\sqrt{90}\\ 5\sqrt{3}=\sqrt{25.3}=\sqrt{75}\)
\(\dfrac{20}{\sqrt{5}}=\dfrac{20\sqrt{5}}{5}=4\sqrt{5}=\sqrt{16.5}=\sqrt{80}\)
\(12\sqrt{\dfrac{2}{3}}=\sqrt{144.\dfrac{2}{3}}=\sqrt{96}\)
Do 96 > 90 > 80 > 75 => \(\sqrt{96}>\sqrt{90}>\sqrt{80}>\sqrt{75}\)
=> \(12\sqrt{\dfrac{2}{3}}>3\sqrt{10}>\dfrac{20}{\sqrt{5}}>5\sqrt{3}\)
bài 1 So sánh
a) 1 và \(\sqrt{3}-1\)
b) 2\(\sqrt{31}\) và 10
c) \(\sqrt{15}-1\) và \(\sqrt{10}\)
a) Ta có: \(2=\sqrt{4}\)
Vì \(4>3\Rightarrow\sqrt{4}>\sqrt{3}\Rightarrow2>\sqrt{3}\Rightarrow1>\sqrt{3}-1\)
b) \(\left\{{}\begin{matrix}2\sqrt{31}=\sqrt{4.31}=\sqrt{124}\\10=\sqrt{100}\end{matrix}\right.\)
Vì \(124>100\Rightarrow\sqrt{124}>\sqrt{100}\Rightarrow2\sqrt{31}>10\)
c) Vì \(15< 16\Rightarrow\sqrt{15}< \sqrt{16}\Rightarrow\sqrt{15}-1< \sqrt{16}-1\)
\(\Rightarrow\sqrt{15}-1< 4-1\Rightarrow\sqrt{15}-1< 3\)
Lại có: \(10>9\Rightarrow\sqrt{10}>\sqrt{9}\Rightarrow\sqrt{10}>3\)
\(\Rightarrow\sqrt{10}>\sqrt{15}-1\)
bài 1 Tính giá trị biểu thức:
a)\(\sqrt{1,44}+3\sqrt{1,69}\)
b)\(\sqrt{0,04}+2\sqrt{0,25}\)
bài 2 bài 2 so sánh
a) 2\(\sqrt{31}\) và 10
b) \(\sqrt{15}-1\) và \(\sqrt{10}\)
a) \(2\sqrt{31}=\sqrt{4.31}=\sqrt{124}>\sqrt{100}=10\\\Rightarrow2\sqrt{31}>10\)
Bài 1:
a) \(\sqrt{1.44}+3\sqrt{1.69}=1.2+3\cdot1.3=1.2+3.9=5.1\)
b) \(\sqrt{0.04}+2\cdot\sqrt{0.25}=0.2+2\cdot0.5=1.2\)
so sánh
\(;\sqrt{2}+1vs\sqrt[3]{7+5\sqrt{2};}\) \(-6\sqrt[3]{7}\&7\sqrt[3]{\left(-6\right)}\)\(;\sqrt[3]{4}+\sqrt[3]{7}\&\sqrt[3]{11}\)\(;\sqrt[3]{10}-2vs\sqrt[3]{2}\)
a) \(\sqrt[3]{7+5\sqrt{2}}=\sqrt{2}+1\)
b) \(-6\sqrt[3]{7}=\sqrt[3]{\left(-6\right)^3\cdot7}=\sqrt[3]{-1512}\)
\(7\sqrt[3]{-6}=\sqrt[3]{7^3\cdot\left(-6\right)}=\sqrt[3]{-2058}\)
mà -1512>-2058
nên \(-6\sqrt[3]{7}>7\cdot\sqrt[3]{-6}\)
\(2\sqrt{8\sqrt{3}}-\sqrt{2\sqrt{3}}-\sqrt{9\sqrt{12}}\)
\(\sqrt{3}+\sqrt{7-4\sqrt{3}}\)
\(\sqrt{\left(\sqrt{7}-4\right)^2}-\sqrt{28}+\sqrt{63}\)
\(\left(15\sqrt{50}+5\sqrt{200}-3\sqrt{450}\right):\sqrt{10}\)
\(\sqrt{3}-2\sqrt{48}+3\sqrt{75}-4\sqrt{108}\)
a: \(2\sqrt{8\sqrt{3}}-\sqrt{2\sqrt{3}}-\sqrt{9\sqrt{12}}\)
\(=2\sqrt{4\cdot2\sqrt{3}}-\sqrt{2\sqrt{3}}-\sqrt{9\cdot2\sqrt{3}}\)
\(=4\sqrt{2\sqrt{3}}-\sqrt{2\sqrt{3}}-3\sqrt{2\sqrt{3}}\)
=0
b: \(\sqrt{3}+\sqrt{7-4\sqrt{3}}\)
\(=\sqrt{3}+\sqrt{\left(2-\sqrt{3}\right)^2}\)
\(=\sqrt{3}+\left|2-\sqrt{3}\right|\)
\(=\sqrt{3}+2-\sqrt{3}\)
=2
c: \(\sqrt{\left(\sqrt{7}-4\right)^2}-\sqrt{28}+\sqrt{63}\)
\(=\left|\sqrt{7}-4\right|-2\sqrt{7}+3\sqrt{7}\)
\(=4-\sqrt{7}+\sqrt{7}\)
=4
d: \(\left(15\sqrt{50}+5\sqrt{200}-3\sqrt{450}\right):\sqrt{10}\)
\(=\dfrac{\sqrt{10}\left(15\sqrt{5}+5\sqrt{20}-3\sqrt{45}\right)}{\sqrt{10}}\)
\(=15\sqrt{5}+5\sqrt{20}-3\sqrt{45}\)
\(=15\sqrt{5}+5\cdot2\sqrt{5}-3\cdot3\sqrt{5}\)
\(=16\sqrt{5}\)
e: \(\sqrt{3}-2\sqrt{48}+3\sqrt{75}-4\sqrt{108}\)
\(=\sqrt{3}-2\cdot4\sqrt{3}+3\cdot5\sqrt{3}-4\cdot6\sqrt{3}\)
\(=\sqrt{3}-8\sqrt{3}+15\sqrt{3}-24\sqrt{3}\)
\(=-16\sqrt{3}\)
1) có bao nhiêu giá trị nguyên của x để biểu thức
\(M=\sqrt{x+4}+\sqrt{2-x}\) có nghĩa
2) so sánh
a) \(\sqrt{33}-\sqrt{17}\) và \(6-\sqrt{15}\)
b) \(4\sqrt{5}\) và \(5\sqrt{3}\)
c) \(\sqrt{3\sqrt{2}}\) và \(\sqrt{2\sqrt{3}}\)
d) \(\sqrt{10}+\sqrt{17}+1\) và \(\sqrt{61}\)
giúp mk nhé mk cần gấp
Bài 1:
Để M có nghĩa thì \(\left\{{}\begin{matrix}x+4\ge0\\2-x\ge0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ge-4\\x\le2\end{matrix}\right.\Leftrightarrow-4\le x\le2\)
Số giá trị nguyên thỏa mãn điều kiện là:
\(\left(2+4\right)+1=7\)
Không dùng máy tính ,hãy so sánh :
1 )\(\sqrt{7-\sqrt{21}+4\sqrt{5}}v\text{à}\sqrt{5}-1\)
2 )\(\sqrt{5}+\sqrt{10}+1v\text{à}\sqrt{35}.\)
3 )\(\frac{15-2\sqrt{10}}{3}v\text{à}\sqrt{15}.\)
1) \(A=\left(\sqrt{7-\sqrt{21}+4\sqrt{5}}\right)^2=7-\sqrt{21}+4\sqrt{5}\)
\(B=\left(\sqrt{5}-1\right)^2=6-2\sqrt{5}\)
\(\Rightarrow A-B=1-\sqrt{21}+6\sqrt{5}=\left(1+\sqrt{180}\right)-\sqrt{21}>0\)
\(\Rightarrow A>B\Rightarrow\sqrt{7-\sqrt{21}+4\sqrt{5}}>\sqrt{5}-1\)
2) \(C=\left(\sqrt{5}+\sqrt{10}+1\right)^2=5+10+1+10\sqrt{2}+2\sqrt{5}+2\sqrt{10}\)
\(=26+10\sqrt{2}+2\sqrt{5}+2\sqrt{10}>26+10>35=\left(\sqrt{35}\right)^2\)
Vậy \(\sqrt{5}+\sqrt{10}+1>\sqrt{35}\)
3) \(\left(\frac{15-2\sqrt{10}}{3}\right)^2=\frac{225-60\sqrt{10}+40}{9}=\frac{265-60\sqrt{10}}{9}=\frac{265}{9}-\frac{20\sqrt{10}}{3}< 15\)
Vậy nên \(\frac{15-2\sqrt{10}}{3}< \sqrt{15}\)