TÌM X,Y,Z (x-1)^2018+(y+3)^2020+(z-5)^2022=0
AI NHANH NHẤT MIK TICK
Cho x+y+z=2020, x+y/z + x+z/y + y+z/x. Tìm M= 1/x + 1/y + 1/z
Giúp mik vs ạ, ai nhanh+ đúng mik tick cho
Đề bài mk có chút thắc mắc
\(\frac{x+y}{z}+\frac{x+z}{y}+\frac{y+z}{x}????!!!!!\)
Mk nghĩ phải là = ms đúng chứ. Sao lại là +
Cho x+y+z=2020, x+y/z + x+z/y + y+z/x=7
mik thiếu số 7 nha
Cho x+y+z=2020, x+y/z + x+z/y + y+z/x7 . Tìm M= 1/x + 1/y + 1/z
Giúp mik vs ạ, ai nhanh+ đúng mik tick cho
Cho x+y+z=2020, x+y/z + x+z/y + y+z/x=7. Tìm M= 1/x + 1/y + 1/z
Giúp mik vs ạ, ai nhanh+ đúng mik tick cho
Cho x+y+z=2020, x+y/z + x+z/y + y+z/x=7. Tìm M= 1/x + 1/y + 1/z
Giúp mik vs ạ, ai nhanh+ đúng mik tick cho
tìm x,y,z biết (7x-5y)^2018+(3x-2z)^2020+(xy+yz+z -4500)^2022=0
hỏi khó thế anh zai
tìm x y z thoả mãn đẳng thức 1/x2022+1/y2022+1/z2022=1/x2021+1/y2021+1/z2021=1/x2020+1/y2020+1/z2020
cho x, y, z thỏa mãn biểu thức( x - 1 )^2018 + (y - 2 )^2020+(z-3)^2022=0 Tính giá trị biểu thức sau: A=1/9(-x)^2021y^2z^3 Làm ơn giúp mình với mình đang vội
( x - 1 )2018 + (y - 2 )2020+(z-3)2022=0
\(\Leftrightarrow\left\{{}\begin{matrix}x-1=0\\y-2=0\\z-3=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=2\\z=3\end{matrix}\right.\)
\(A=\dfrac{1}{9}\left(-x\right)^{2021}y^2z^3=\dfrac{1}{3}\left(-1\right)^{2021}.2^2.3^3=\dfrac{1}{3}.\left(-1\right).4.27=-36\)
Cho \(\dfrac{x}{2020}+\dfrac{y}{2021}+\dfrac{z}{2022}=1\) và \(\dfrac{2020}{x}+\dfrac{2021}{y}+\dfrac{2022}{z}=0\) \(\left(x,y,z\ne0\right)\)
Chứng minh rằng \(\dfrac{x^2}{2020^2}+\dfrac{y^2}{2021^2}+\dfrac{z^2}{2022^2}=1\)
Cho x, y, z thỏa mãn: \(\hept{\begin{cases}x^4-2y^2+1=0\\y^4-2z^2+1=0\\z^4-2x^2+1=0\end{cases}}\)
Tính: \(P=x^{2022}+y^{2020}+z^{2018}\)
Các cậu giúp hộ mik vs!!!
\(\left(x^4-2x^2+1\right)+\left(y^4-2y^2+1\right)+\left(z^4-2z^2+1\right)=0\)
\(\Leftrightarrow\)\(\left(x^2-1\right)^2+\left(y^2-1\right)^2+\left(z^2-1\right)^2=0\)
\(\Leftrightarrow\)\(\hept{\begin{cases}\left(x-1\right)\left(x+1\right)=0\\\left(y-1\right)\left(y+1\right)=0\\\left(z-1\right)\left(z+1\right)=0\end{cases}}\)\(\Rightarrow\)\(x,y,z\in\left\{1;-1\right\}\)
Mà \(\hept{\begin{cases}x^{2022}\ge0\forall x\\y^{2020}\ge0\forall y\\z^{2018}\ge0\forall z\end{cases}}\) nên P nhận giá trị không đổi khi \(x,y,z\in\left\{1;-1\right\}\)
\(\Rightarrow\)\(P=1+1+1=3\)