Z = \(\frac{z}{3a+z}-\frac{z}{z-3a}=\frac{a^2}{9a^2-z^2}\)
Tìm a khi z=1
26,Cho PT ẩn z:
\(\frac{z}{3a+z}-\frac{z}{z-3a}=\frac{a^2}{9a^2-z^2}\)
a,Giải PT khi a=1.
b,Tìm các giá trị của a khi z=1
bài 1 giải phương trình
a) \(\frac{x+5}{x-1}=\frac{x+1}{x-3}-\frac{8}{x^2-4x+3}\)
B) \(\frac{2}{\left(1-3x\right)\left(3x+11\right)}=\frac{1}{9x^2-6x+1}-\frac{3}{\left(3x+11\right)^2}\)
Bài 2 cho ẩn z
\(\frac{z}{3z+z}-\frac{z}{z-3a}=\frac{a^2}{9a^2-z^2}\)
a) giải phương trình khi a=1
b) tìm cá giá trị a khi z=1
Bài 1:
Tìm x, y, z biết (x+z):(y+z):(7+z):(5-y)=2:3:10:6
Bài 2:
Cho: \(\frac{3a-2b}{5}=\frac{2c-5a}{3}=\frac{5b-3c}{2}\)
a,CMR: \(\frac{a}{2}=\frac{b}{3}=\frac{c}{5}\)
b, Tìm a, b, c biết \(9a^2-ab^2+c^2=25\)
c, CMR \(2\left(a-b\right)\left(b-c\right)=a^2\)
Bài 2/a
Giả sử \(\frac{a}{2}=\frac{b}{3}=\frac{c}{5}=k\Rightarrow\hept{\begin{cases}a=2k\\b=3k\\c=5k\end{cases}}\)
\(\Rightarrow\frac{3a-2b}{5}=\frac{2c-5a}{3}=\frac{5b-3c}{2}\)
\(\Rightarrow\frac{3\cdot2k-2\cdot3k}{5}=\frac{2\cdot5k-5\cdot2k}{3}=\frac{5\cdot3k-3\cdot5k}{2}\)
\(\Rightarrow\frac{6k-6k}{5}=\frac{10k-10k}{3}=\frac{15k-15k}{2}\)
\(\Rightarrow\frac{0}{5}=\frac{0}{3}=\frac{0}{2}=0\left(đpcm\right)\)
Bài 2/c
Có a = 2k ; b = 3k ; c = 5k
=> 2 (a - b) (b - c) = a2
=> 2 (2k - 3k) (3k - 5k) = (2k)2
=> 2 (-1)k . (-2)k = 4k2
=> 4k2 = 4k2 (đpcm)
Mình chỉ làm được có vậy thôi, mong bạn thông cảm =))
Chúc bạn học tốt =))
\(\frac{3a-2b}{5}=\frac{2c-5a}{3}=\frac{5b-3c}{2}\)
\(\Rightarrow\frac{15a-10b}{25}=\frac{6c-15a}{9}=\frac{10b-6c}{4}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{15a-10b}{25}=\frac{6c-15a}{9}=\frac{10b-6c}{4}=\frac{15a-10b+6c-15a+10b-6c}{25+9+4}=0\)
\(\Rightarrow\hept{\begin{cases}\frac{15a-10b}{25}=0\\\frac{6c-15a}{9}=0\end{cases}}\) \(\Rightarrow\hept{\begin{cases}3a-2b=0\\2c-5a=0\end{cases}}\)\(\Rightarrow\hept{\begin{cases}3a=2b\\2c=5a\end{cases}}\)\(\Rightarrow\hept{\begin{cases}\frac{a}{2}=\frac{b}{3}\\\frac{c}{5}=\frac{a}{2}\end{cases}}\)
\(\Rightarrow\frac{a}{2}=\frac{b}{3}=\frac{c}{5}\)
Tìm a \(\in\)Z để :
a, \(\frac{4a-3}{5a-1}\in Z\)
b, \(\frac{a^2+3}{a-1}\in Z\)
c, \(\frac{a^2-3a-5}{a-2}\in Z\)
Bài 1:
Tìm x, y, z biết\(\hept{\begin{cases}xy+x+y=1\\yz+y+z=3\\zx+z+x=7\end{cases}}\)
Bài 2:
Rút gọn A = \(\frac{3a^2-2ab-b^2}{2a+ab-b^2}\): \(\frac{3a^2-4ab+b^2}{3a^2+2ab-b^2}\)
Ta có: \(\hept{\begin{cases}xy+x+y=1\\yz+y+z=3\\xz+x+z=7\end{cases}}\Rightarrow\hept{\begin{cases}xy+x+y+1=2\\yz+y+z+1=4\\xz+x+z+1=8\end{cases}}\Rightarrow\hept{\begin{cases}\left(x+1\right)\left(y+1\right)=2\\\left(y+1\right)\left(z+1\right)=4\\\left(x+z\right)\left(z+1\right)=8\end{cases}}\)
Nhân theo vế:
\(\left[\left(x+1\right)\left(y+1\right)\left(z+1\right)\right]^2=64\Rightarrow\orbr{\begin{cases}\left(x+1\right)\left(y+1\right)\left(z+1\right)=8\\\left(x+1\right)\left(y+1\right)\left(z+1\right)=-8\end{cases}}\)
Thay vào từng trường hợp tìm x;y;z
đặt \(A=\frac{\sqrt{yz}}{x+3\sqrt{yz}}+\frac{\sqrt{zx}}{y+3\sqrt{zx}}+\frac{\sqrt{xy}}{z+3\sqrt{xy}}\)
\(\Rightarrow1-3A=\frac{x}{x+3\sqrt{yz}}+\frac{y}{y+3\sqrt{zx}}+\frac{z}{z+3\sqrt{xy}}\)
\(\ge\frac{x}{x+\frac{3}{2}\left(y+z\right)}+\frac{y}{y+\frac{3}{2}\left(z+x\right)}+\frac{z}{z+\frac{3}{2}\left(x+y\right)}\)
\(=\frac{2x}{2x+3\left(y+z\right)}+\frac{2y}{2y+3\left(z+x\right)}+\frac{2z}{2z+3\left(x+y\right)}\)
\(=\frac{2x^2}{2x^2+3xy+3xz}+\frac{2y^2}{2y^2+3yz+3xy}+\frac{2z^2}{2z^2+3zx+3yz}\)
\(\ge\frac{2\left(x+y+z\right)^2}{2\left(x^2+y^2+z^2\right)+6\left(xy+yz+zx\right)}=\frac{2\left(x+y+z\right)^2}{2\left(x+y+z\right)^2+2\left(xy+yz+zx\right)}\)
\(\ge\frac{2\left(x+y+z\right)^2}{2\left(x+y+z\right)^2+\frac{2}{3}\left(x+y+z\right)^2}=\frac{2\left(x+y+z\right)^2}{\frac{8}{3}\left(x+y+z\right)^2}=\frac{3}{4}\)
\(\Rightarrow1-3A\ge\frac{3}{4}\Rightarrow A\le\frac{3}{4}\left(Q.E.D\right)\)
1/ Tìm x, y biết:
a/ \(\frac{x}{y}=\frac{7}{3}\)và 5x - 2y = 87
b/ \(\frac{x}{19}=\frac{y}{21}và2x-y=34\)
2/ Tìm các số a, b, c biết rằng: 2a = 3b; 5b = 7c và 3a+5c - 7b = 30
3/ Tìm các số x; y; z biết rằng:
a/ \(3x=2y;7y=5z\) và x - y + z =32
b/ \(\frac{2x}{3}=\frac{3y}{4}=\frac{4z}{5}\)và x + y + z =49
c/ \(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}\) và 2x +3y - z =50
4/ Tìm các số x; y; z biết rằng:
a/ \(\frac{x^3}{8}=\frac{y^3}{64}=\frac{z^3}{216}\) và \(x^2+y^2+z^2=14\)
b/ \(\frac{y+z+1}{x}=\frac{x+z+2}{y}=\frac{x+y-3}{z}=\frac{1}{x+y+z}\)
c/ \(\frac{1+2y}{18}=\frac{1+4y}{24}=\frac{1+6y}{6x}\)
d/ \(\frac{2x+1}{5}=\frac{3y-2}{7}=\frac{2x+3y-1}{6x}\)
1.
a)Ta có: 3.x=y.7
3x chia hết cho 7 mà 3 và 7 là số nguyên tố cùng nhau
suy ra: x chia hết cho 2 hay x=2k (k thuộc tập hợp số nguyên)
7y chia hết cho 3 mà 7 và 3 là số nguyên tố cùng nhau
suy ra: y chia hết cho 3 hay y=7k (k thuộc tập hợp số nguyên)
(y khác 0 nên k khác 0)
vậy: x=2.k
y=5.k
(k thuộc tập hợp Z và k khác 0)
cho biểu thức P=\(\frac{3a+\sqrt{9a}-3}{a+\sqrt{a}-2}\)-\(\frac{\sqrt{a}+1}{\sqrt{a}+2}\)+\(\frac{\sqrt{a}-2}{1-\sqrt{a}}\)
a, rút gọn P
b, tìm a thuộc Z để P thuộc Z
c, tìm a để P=\(\sqrt{a}\)
2. a) \(\left\{{}\begin{matrix}x,y,z>1\\x+y+z=xyz\end{matrix}\right.\) Tìm min \(P=\frac{x-1}{y^2}+\frac{y-1}{z^2}+\frac{z-1}{x^2}\)
b) \(a,b,c>0.Cmr:\left(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\right)^2\ge\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)
c) \(\left\{{}\begin{matrix}x,y,z\ge0\\x^2+y^2+z^2=2\end{matrix}\right.\) Tìm max \(P=\frac{x^2}{x^2+yz+x+1}+\frac{y+z}{x+y+z+1}-\frac{1+yz}{9}\)
d) \(\left\{{}\begin{matrix}a,b,c>0\\a+b+c=3\end{matrix}\right.\). Cmr: \(\frac{a}{ab+3c}+\frac{b}{bc+3a}+\frac{c}{ca+3b}\ge\frac{3}{4}\)
\(A=\frac{a}{ab+c\left(a+b+c\right)}+\frac{b}{bc+a\left(a+b+c\right)}+\frac{c}{ca+b\left(a+b+c\right)}\)
\(=\frac{a}{\left(b+c\right)\left(a+c\right)}+\frac{b}{\left(a+b\right)\left(a+c\right)}+\frac{c}{\left(a+b\right)\left(c+b\right)}\)
Áp dụng bđt AM-GM ta có
\(A=\frac{a\left(a+b\right)+b\left(b+c\right)+c\left(c+a\right)}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\)
\(\ge27.\frac{a^2+b^2+c^2+ab+bc+ca}{8\left(a+b+c\right)^3}\)\(=\frac{a^2+b^2+c^2+ab+bc+ca}{8}\)
\(=\frac{\left(a+b+c\right)^2-\left(ab+bc+ca\right)}{8}\)\(\ge\frac{9-\frac{\left(a+b+c\right)^2}{3}}{8}=\frac{9-3}{8}=\frac{3}{4}\)
Dấu "=" xảy ra khi a=b=c=1
b) Mạnh hơn, và dễ dàng hơn là:
\(\left(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\right)^2\ge\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)+\frac{\sum c\left(a-b\right)^2}{abc}\)
Nó tương đương với: \({\frac {{a}^{2}}{{b}^{2}}}+{\frac {{b}^{2}}{{c}^{2}}}+{\frac {{c}^{2} }{{a}^{2}}}+3-2\,{\frac {a}{b}}-2\,{\frac {b}{c}}-2\,{\frac {c}{a}} \geqq 0\)
Là hiển nhiên vì \(\frac{a^2}{b^2}+1\ge\frac{2a}{b}\)
Đơn giản:))
a) Đặt \(\left(x;y;z\right)=\left(\frac{1}{a};\frac{1}{b};\frac{1}{c}\right)\rightarrow ab+bc+ca=1;0< a,b,c< 1\)
Cần chứng minh: \(P=\sum\frac{\frac{1}{a}-1}{\frac{1}{b^2}}=\sum\frac{b^2-ab^2}{a}\ge\sqrt{3}-1\)
Hay là: \(\left(\frac{b^2}{a}+\frac{c^2}{b}+\frac{a^2}{c}\right)\sqrt{ab+bc+ca}\ge\left(\sqrt{3}-1\right)\left(ab+bc+ca\right)+a^2+b^2+c^2\)
\(\Leftrightarrow\left(\frac{b^2}{a}+\frac{c^2}{b}+\frac{a^2}{c}\right)^2\left(ab+bc+ca\right)\ge\) \(\Big[ (\sqrt{3} -1) (ab+bc+ca) +a^2+b^2+c^2\Big]^2\)
Giả sử \(c=\min\{a,b,c\}\) và đặt \(a=c+u, \, b=c+v \, (u,\, v \geq 0)\)
Nếu mình không nhìn nhầm, sau khi rút gọn, nhóm lại theo biến c, bạn nhận được một cái gì đó gọi là hiển nhiên
Chúc may mắn, mình mới rút gọn thử thì thấy có vẻ hiển nhiên thật :))