nói chung đéo biết :v
nói chung đéo biết :v
bài 1 giải phương trình
a) \(\frac{x+5}{x-1}=\frac{x+1}{x-3}-\frac{8}{x^2-4x+3}\)
B) \(\frac{2}{\left(1-3x\right)\left(3x+11\right)}=\frac{1}{9x^2-6x+1}-\frac{3}{\left(3x+11\right)^2}\)
Bài 2 cho ẩn z
\(\frac{z}{3z+z}-\frac{z}{z-3a}=\frac{a^2}{9a^2-z^2}\)
a) giải phương trình khi a=1
b) tìm cá giá trị a khi z=1
Bài 1:
Tìm x, y, z biết\(\hept{\begin{cases}xy+x+y=1\\yz+y+z=3\\zx+z+x=7\end{cases}}\)
Bài 2:
Rút gọn A = \(\frac{3a^2-2ab-b^2}{2a+ab-b^2}\): \(\frac{3a^2-4ab+b^2}{3a^2+2ab-b^2}\)
Tính:a) \(A=\frac{2}{x-y}+\frac{2}{y-z}+\frac{2}{z-x}+\frac{\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2}{\left(x-y\right)\left(y-z\right)\left(z-x\right)}\)
b) Cho \(\frac{x}{y+z}+\frac{y}{z+x}+\frac{z}{x+y}=1\) . Tính \(A=\frac{x^2}{y+z}+\frac{y^2}{z+x}+\frac{z^2}{x+y}\)
\(\frac{x}{y+z}+\frac{y}{z+x}+\frac{z}{x+y}=1\Rightarrow A=\frac{x^2}{y+z}+\frac{y^2}{z+x}+\frac{z^2}{x+y}=?\)
\(x+y+z=1,\frac{x}{y+z}+\frac{y}{x+z}+\frac{z}{x+y}=1\)
tính giá trị của biểu thức A=\(\frac{x^2}{y+z}+\frac{y^2}{x+z}+\frac{z^2}{x+y}\)
CHo \(\frac{x}{y+z}+\frac{y}{z+x}+\frac{z}{x+y}=1\)
Tính : \(A=\frac{x^2}{y+z}+\frac{y^2}{x+z}+\frac{z^2}{x+y}\)
cho các số x, y, z thỏa mãn \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=2015\) tìm MAX P =\(\frac{x+y}{x^2+y^2}+\frac{y+z}{y^2+z^2}+\frac{z+x}{z^2+x^2}\)
bài 1) CMR
a) (x+y)(y+z)(z+x)=0 (x;y;z#0)
thì \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{x+y+z}\)
b) cho \(\frac{x}{a}+\frac{y}{b}+\frac{z}{c}=1và\frac{a}{x}+\frac{b}{y}+\frac{c}{z}=0\)
chứng minh \(\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}=1\)
1. Cho \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=k\) và \(a+b+c=abc\)
Tìm \(k\) để \(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}=k\)
2. Cho \(\frac{x^2}{y+z}+\frac{y^2}{x+z}+\frac{z^2}{x+y}=0\) và \(x+y+z\ne0\)
C/m \(\frac{x}{y+z}+\frac{y}{z+x}+\frac{z}{x+y}=1\)