Tìm hai số a,b biết: \(\left\{{}\begin{matrix}a+b=22\\a^2+b^2=84\end{matrix}\right.\)
Cho số thực a < 0 và hai tập hợp A = (-∞; 9a), B = (\(\dfrac{4}{a}\); +∞). Tìm a để A\(\cap\)B ≠ ∅
A. \(\left[{}\begin{matrix}a\ge3\\a< -4\end{matrix}\right.\)
B. \(\left[{}\begin{matrix}a\ge\dfrac{5}{2}\\a< -\dfrac{1}{3}\end{matrix}\right.\)
C. \(\left[{}\begin{matrix}a< \dfrac{5}{2}\\a\ge-\dfrac{1}{3}\end{matrix}\right.\)
D. -\(\dfrac{1}{3}\)≤ a ≤ \(\dfrac{5}{2}\)
Tìm số hạng đầu \(u_1\) và công sai \(d\in Z\) của cấp số cộng \(\left(u_n\right)\) biết
a) \(\left\{{}\begin{matrix}u_6=8\\u_2^2+u_4^2=16\end{matrix}\right.\)
b) \(\left\{{}\begin{matrix}u_5=18\\4S_n=S_{2n}\end{matrix}\right.\)
a/ \(u_6=u_1+5d=8\Rightarrow u_1=8-5d\)
\(u_2=u_1+d;u_4=u_1+3d\)
\(\Rightarrow\left\{{}\begin{matrix}u_2=8-5d+d=8-4d\\u_4=8-5d+3d=8-2d\end{matrix}\right.\)
\(\Rightarrow\left(8-4d\right)^2+\left(8-2d\right)^2=16\Rightarrow...\)
b/ Câu này làm theo ý hiểu thôi, ko chắc đâu
\(Xet-S_n:\)
\(u_1=u_1\)
\(u_2=u_1+d\)
\(u_3=u_1+2d\)
......
\(u_n=u_1+\left(n-1\right)d\)
\(\Rightarrow S_n=u_1+u_2+...+u_n=u_1+u_1+d+...+u_1+\left(n-1\right)d=n.u_1+d+2d+....+\left(n-1\right)d\)
\(=n.u_1+\left(1+2+...+\left(n-1\right)\right)d=n.u_1+\dfrac{d\left(n-1\right).n}{2}=\dfrac{n\left[2u_1+\left(n-1\right)d\right]}{2}\)
Tương tụ với S(2n)
\(S_{2n}=u_1+u_2+...+u_{2n}=u_1+u_1+d+....+u_1+\left(2n-1\right)d\)
\(=2n.u_1+d+2d+...+\left(2n-1\right)d=2n.u_1+\left(1+2+...+\left(2n-1\right)\right)d=2n.u_1+d.n\left(2n-2\right)=2n\left(u_1+\left(n-1\right).d\right)\)
\(4S_n=S_{2n}\Leftrightarrow4.\dfrac{n\left[2u_1+\left(n-1\right)d\right]}{2}=2n\left(u_1+\left(n-1\right).d\right)\)
\(\Leftrightarrow2n\left[2u_1+\left(n-1\right)d\right]=2n\left[u_1+\left(n-1\right)d\right]\)\(\Leftrightarrow2u_1=u_1\Rightarrow u_1=0\)
\(u_5=u_1+4d=18\Rightarrow d=\dfrac{18}{4}=4,5\)
Ok check lại số má hộ tui nhó
Tìm số hạng đầu, công sai của cấp số cộng biết:
\(a,\left\{{}\begin{matrix}u_1+u_5-u_3=10\\u_2+u_5=7\end{matrix}\right.\)
\(b,\left\{{}\begin{matrix}u_2+u_4=5\\u_1^2+u_5^2=25\end{matrix}\right.\)
a.
\(\left\{{}\begin{matrix}u_1+\left(u_1+4d\right)-\left(u_1+2d\right)=10\\\left(u_1+d\right)+\left(u_1+4d\right)=7\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}u_1+2d=10\\2u_1+5d=7\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}u_1=36\\d=-13\end{matrix}\right.\)
b.
\(\left\{{}\begin{matrix}u_1+d+u_1+3d=5\\u_1^2+\left(u_1+4d\right)^2=25\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}4d=5-2u_1\\u_1^2+\left(u_1+4d\right)^2=25\end{matrix}\right.\)
\(\Rightarrow u_1^2+\left(u_1+5-2u_1\right)^2=25\)
\(\Rightarrow u_1^2+u_1^2-10u_1+25=25\)
\(\Rightarrow\left[{}\begin{matrix}u_1=0\Rightarrow d=\dfrac{5}{4}\\u_1=5\Rightarrow d=-\dfrac{5}{4}\end{matrix}\right.\)
Tìm số hạng đầu và công bội của cấp số nhân biết:
\(a,\left\{{}\begin{matrix}u_1+u_2+u_3+u_4=30\\u^2_1+u_2^2+u^2_3+u_4^2=340\end{matrix}\right.\)
\(b,\left\{{}\begin{matrix}u_1.u_2.u_3=64\\u_1+u_2+u_3\end{matrix}\right.=14\)
Giải hệ phương trình
a) \(\left\{{}\begin{matrix}x+y+xy=7\\x^2+y^2+xy=13\end{matrix}\right.\)
b) \(\left\{{}\begin{matrix}x+y+xy+1=0\\x^2+y^2-x-y=22\end{matrix}\right.\)
c) \(\left\{{}\begin{matrix}x+y+x^2+y^2=8\\xy\left(x+1\right)\left(y+1\right)=12\end{matrix}\right.\)
a/
\(\Leftrightarrow\left\{{}\begin{matrix}x+y+xy=7\\\left(x+y\right)^2-xy=13\end{matrix}\right.\)
\(\Rightarrow\left(x+y\right)^2+x+y=20\)
\(\Leftrightarrow\left(x+y\right)^2+x+y-20=0\)
\(\Rightarrow\left[{}\begin{matrix}x+y=4\Rightarrow xy=3\\x+y=-5\Rightarrow xy=12\end{matrix}\right.\)
TH1: \(\left\{{}\begin{matrix}x+y=4\\xy=3\end{matrix}\right.\) theo Viet đảo x; y là nghiệm:
\(t^2-4t+3=0\Rightarrow\left[{}\begin{matrix}t=1\\t=3\end{matrix}\right.\)
\(\Rightarrow\left(x;y\right)=\left(1;3\right);\left(3;1\right)\)
TH2: \(\left\{{}\begin{matrix}x+y=-5\\xy=12\end{matrix}\right.\) theo Viet đảo x; y là nghiệm:
\(t^2+5t+12=0\left(vn\right)\)
b/
\(\Leftrightarrow\left\{{}\begin{matrix}x+y+xy+1=0\\\left(x+y\right)^2-2xy-x-y=22\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}2\left(x+y\right)+2xy+2=0\\\left(x+y\right)^2-2xy-x-y-22=0\end{matrix}\right.\)
\(\Rightarrow\left(x+y\right)^2+\left(x+y\right)-20=0\)
\(\Rightarrow\left[{}\begin{matrix}x+y=4\Rightarrow xy=-5\\x+y=-5\Rightarrow xy=4\end{matrix}\right.\)
TH1: \(\left\{{}\begin{matrix}x+y=4\\xy=-5\end{matrix}\right.\) thì x; y là nghiệm:
\(t^2-4t-5=0\Rightarrow\left[{}\begin{matrix}t=-1\\t=5\end{matrix}\right.\)
\(\Rightarrow\left(x;y\right)=\left(-1;5\right);\left(5;-1\right)\)
TH2: \(\left\{{}\begin{matrix}x+y=-5\\xy=4\end{matrix}\right.\) thì x; y là nghiệm:
\(t^2+5t+4=0\Rightarrow\left[{}\begin{matrix}t=-1\\t=-4\end{matrix}\right.\)
\(\Rightarrow\left(x;y\right)=\left(-1;-4\right);\left(-4;-1\right)\)
c/
\(\Leftrightarrow\left\{{}\begin{matrix}x^2+x+y^2+y=8\\\left(x^2+x\right)\left(y^2+y\right)=12\end{matrix}\right.\)
Đặt \(\left\{{}\begin{matrix}x^2+x=a\\y^2+y=b\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}a+b=8\\ab=12\end{matrix}\right.\) theo Viet đảo, a và b là nghiệm:
\(t^2-8t+12=0\Rightarrow\left[{}\begin{matrix}t=6\\t=2\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x^2+x=6\\y^2+y=2\end{matrix}\right.\\\left\{{}\begin{matrix}x^2+x=2\\y^2+y=6\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x^2+x-6=0\\y^2+y-2=0\end{matrix}\right.\\\left\{{}\begin{matrix}x^2+x-2=0\\y^2+y-6=0\end{matrix}\right.\end{matrix}\right.\)
Bạn tự bấm máy
Hai số a,b thỏa mãn \(\left\{{}\begin{matrix}a,b>0\\\left(\sqrt{a}+1\right)\left(\sqrt{b}+1\right)\ge4\end{matrix}\right.\)
Chứng minh \(\dfrac{a^2}{b}+\dfrac{b^2}{a}\ge2\)
Ta có:
\(4\le\left(\sqrt{a}+1\right)\left(\sqrt{b}+1\right)=\sqrt{ab}+\sqrt{a}+\sqrt{b}+1\le\dfrac{a+b}{2}+\dfrac{a+1}{2}+\dfrac{b+1}{2}+1\)
\(=a+b+2\)
\(\Leftrightarrow a+b\ge2\)
\(\dfrac{a^2}{b}+\dfrac{b^2}{a}\ge\dfrac{\left(a+b\right)^2}{a+b}=a+b\ge2\)
Dấu \(=\) xảy ra khi \(a=b=1\).
1.) liệt kê các tập hợp sau :
a.) A = \(\left\{{}\begin{matrix}\\\end{matrix}\right.x\in N|}2\le x\le10\left\{\right\}\)
b.) B =\(\left\{{}\begin{matrix}\\\end{matrix}\right.x\in Z|9\le x^2\le36\left\{\right\}}\)
c.) C = \(\left\{{}\begin{matrix}\\\end{matrix}\right.n\in N}^{\cdot}|3\le n^2\le30\left\{\right\}\)
B.) B là tập hợp các số thực x thỏa x2 - 4x +2 = 0
d.) D = \(\left\{{}\begin{matrix}\\\end{matrix}\right.\frac{1}{n+1}}|n\in N;n\le4\left\{\right\}\)
e.) E = \(\left\{{}\begin{matrix}\\\end{matrix}\right.2n^2-1|n\in N^{\cdot}},n\le7\left\{\right\}\)
2.) chỉ ra tính chất đặc trưng :
a.) A = \(\left\{{}\begin{matrix}\\\end{matrix}\right.0;1;2;3;4\left\{\right\}}\)
b.) B = \(\left\{{}\begin{matrix}\\\end{matrix}\right.0;4;8;12;16\left\{\right\}}\)
c.) C = \(\left\{{}\begin{matrix}\\\end{matrix}\right.0;4;9;16;25;36\left\{\right\}}\)
3.) Trong các tập hợp sau , tập hợp nào là con tập nào :
a.) A = \(\left\{{}\begin{matrix}\\\end{matrix}\right.1;2;3\left\{\right\}}\)
B = \(\left\{{}\begin{matrix}\\\end{matrix}\right.x\in N^{\cdot}|n\le4\left\{\right\}}\)
b.) A = \(\left\{{}\begin{matrix}\\\end{matrix}\right.n\in N^{\cdot}}|n\le5\left\{\right\}\)
B = \(\left\{{}\begin{matrix}\\\end{matrix}\right.n\in Z|0\le|n|\le5\left\{\right\}}\)
1) y = \(\sqrt{6-x}+\sqrt{x-2}\)
2) a) cho \(\left\{{}\begin{matrix}a,b,c>0\\a+2b+3c=14\end{matrix}\right.\)
tìm Pmin với P = a2+b2+c2
b) cho \(\left\{{}\begin{matrix}a,b,c>0\\a^2+4ab+9c^2=2015\end{matrix}\right.\)
tìm Pmax với P = a+b+c
2: Điểm rơi... đẹp!
Áp dụng bất đẳng thức AM - GM:
\(\left\{{}\begin{matrix}a^2+1\ge2a\\b^2+4\ge4b\\c^2+9\ge6c\end{matrix}\right.\)
\(\Rightarrow a^2+b^2+c^2+14\ge2\left(a+2b+3c\right)=28\).
\(\Rightarrow a^2+b^2+c^2\ge14\).
Đẳng thức xảy ra khi a = 1; b = 2; c = 3.
1: Ta có \(y^2\ge6-x+x-2=4\Rightarrow y\ge2\).
Đẳng thức xảy ra khi x = 6 hoặc x = 2
\(y^2\le2\left(6-x+x-2\right)=8\Rightarrow y\le2\sqrt{2}\).
Đẳng thức xảy ra khi x = 4.
Cộng vế với vế:
\(x^2+2xy+y^2+x+y=12\)
\(\Leftrightarrow\left(x+y\right)^2+\left(x+y\right)-12=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+y=-4\\x+y=3\end{matrix}\right.\)
TH1: \(\left\{{}\begin{matrix}x+y=-4\\xy=5-\left(x+y\right)=9\end{matrix}\right.\)
Theo Viet đảo, x và y là nghiệm: \(t^2-4t+9=0\) (vô nghiệm)
TH2: \(\left\{{}\begin{matrix}x+y=3\\xy=5-\left(x+y\right)=2\end{matrix}\right.\)
Theo Viet đảo, x và y là nghiệm:
\(t^2-3t+2=0\Rightarrow\left[{}\begin{matrix}t=1\\t=2\end{matrix}\right.\)
\(\Rightarrow\left(x;y\right)=\left(1;2\right);\left(2;1\right)\)