Cho Δ nhọn ABC , kẻ các đường cao CH , BK ( H , K lần lượt nằm trên AB và AC ) .Trên tia CH lấy điểm P , trên tia BK lấy điểm Q sao cho góc PAQ = 90o . Kẻ AM ⊥ PQ ( M nằm trên PQ ) . Chứng minh rằng MB ⊥ MC
Cho tứ giác ABCD có AC>BD. Lấy các điểm M, P theo thứ tự trên các đoạn AB, AC sao cho \(\frac{AM}{AB}=\frac{CP}{CD}\). Trên tia CA lấy K sao cho CK=KD. Gọi H, O lần lượt là trung điểm của BK và AC. Qua M, P kẻ các đường thẳng song song với BK, cắt AH, CH theo thứ tự tại N và Q. a) CMR: MN=PQ
b) CMR: NQ song song với AC. Từ đó chứng minh H, O và trung điểm I của MP thẳng hàng
Cho tam giác ABC nhọn, AB > AC, đường cao BE và CF cắt nhau tại H. Gọi M là trung điểm BC. Trên tia đối của các tia AM và AC lần lượt lấy P và Q sao cho AP=AM VÀ AQ=AC.
C/m: AH vuông góc với PQ
Xét tứ giác QPCM có
A là trung điểm chung của QC và PM
=>QPCM là hình bình hành
=>PQ//BC
Xét ΔABC có
BE,CF là đường cao
BE cắt CF tại H
=>H là trực tâm
=>AH vuông góc BC
=>AH vuông góc PQ
\(Bài 1. Cho góc xOy, có Ot là tia phân giác. Lấy điểm A trên tia Ox, điểm B trên tia Oy sao cho OA = OB. Vẽ đoạn thẳng AB cắt Ot tại M. Chứng minh a) OAM = OBM; b) AM = BM; OM AB c) OM là đường trung trực của AB d) Trên tia Ot lấy điểm N . Chứng minh NA = NB Bài 2. Cho ABC vuông tại A, trên tia đối của tia CA lấy điểm K sao cho CK = CA, từ K kẻ KE vuông góc với đường thẳng AC. Chứng mỉnhằng: a) AB // KE b) ABC = KEC ; BC = CE Bài 3. Cho góc nhọn xOy. Trên tia Ox lấy hai điểm A, C. Trên tia Oy lấy hai điểm B,D sao cho OA = OB, AC = BD. a) Chứng minh: AD = BC. b) Gọi E là giao điểm AD và BC. Chứng minh: EAC = EBD c) Chứng minh: OE là phân giác của góc xOy, OE CD Bài 4. Cho ABC coù BÂ=900, gọi M là trung điểm của BC. Trên tia đối của tia AM lấy điểm E sao cho ME = MA. a) Tính BCE b) Chứng minh BE // AC. Bài 5. Cho ABC, lấy điểm D thuộc cạnh BC ( D không trùng với B,C). Gọi Mlà trung điểm của AD. Trên tia đối của tia MB lấy điểm E sao cho ME= MB, trên tia đối của tia MC lấy điểm F sao cho MF= MC. Chứng minh rằng: a) AME = DMB; AE // BC b) Ba điểm E, A, F thẳng hàng c) BF // CE Bài 6: Cho có B = C , kẻ AH BC, H BC . Trên tia đối của tia BC lấy điểm D, trên tia đối của tia CB lấy điểm E sao cho BD = CE. Chứng minh: a) AB = AC b) ABD = ACE c) ACD = ABE d) AH là tia phân giác của góc DAE e) Kẻ BK AD, CI AE. Chứng minh ba đường thẳng AH, BK, CI cùng đi qua một điểm. \)
chịu. nhình rối hết cả mắt @-@
Bài 3. (3,0 điểm) Cho tam giác ABC, lấy M là trung điểm của cạnh BC. Trên tia đối của tia MA lấy điểm D sao cho MA = MD.
a) Chứng minh AMB = DMC;
b) Chứng minh AC // BD;
c) Kẻ AH ⊥ BC, DK ⊥ BC (H, K thuộc BC). Chứng minh BK = CH;
d) Gọi I là trung điểm của AC, vẽ điểm E sao cho I là trung điểm của BE. Chứng minh C là trung điểm của DE.
Cho tam giác ABC có AB=AC và M là trung điểm củ BC. Trên tia đối của tia BC lấy điểm D, trên tia đối của tia CB lấy điểm E sao cho BD=CE.
CHỨNG MINH: tam giác ABM=tam giác ACM. Từ đó suy ra AM vuông góc BC.C/m:tam giá ABD=tam giác ACE. Từ đó suy ra AM là đường phân giác của góc DAE.Kẻ BK vuông góc AD (K\(\in\)AD). Trên tia đối BK lấy điểm H sao cho BH=AE, trên tia đối của tia AM lấy điểm N sao cho AN=CE. C/m: góc MAD=góc MBcho tam giác nhọn ABC có AB<AC, điểm M là trung điểm của BC. Vẽ BH vuông góc với AM tại H (H thuộc AM). Trên tia AM lấy K sao cho M là trung điểm của HK
a) Chứng minh ΔHMC = ΔKMB
b) Chứng minh CK vuông góc với AK
c) Trên HC lấy E, trên BK lấy F sao cho CE = BF. Chứng minh rằng EF đi qua điểm M
- Giúp mình với, mình cần gấp. Thank you
Cho tam giác nhọn ABC (AB < AC). Gọi D là trung điểm của BC. Trên tia đối của tia DA lấy điểm M sao cho DM = DA.
a) Chứng minh AC = BM và AC // BM.
b) Chứng minh ∆ A B M = ∆ M C A .
c) Kẻ A H ⊥ B C , M K ⊥ B C ( H , K ∈ B C ) . Chứng minh BK = CH.
d) Chứng minh HM // AK.
Cho tam giác ABC có AB=AC và M là trung điểm của BC. Trên tia đối của tia BC lấy điểm D, trên tia đối của tia CB lấy điểm E sao cho BD=CE
a) Chứng minh tam giác ABM= tam giác ACM từ đó suy ra AM vuông góc vs BC
b) Chứng minh tam giác ABD= tam giác ACE từ đó suy ra AM là tia phân giác của góc DAE
c) Kẻ BK vuông góc AD( K thuộc AD) trên tia đối của tia BK lấy điểm H sao cho BH=AE, trên tia đối của tia AM lấy điểm N sao cho AN=CE, Chứng minh góc MAD= góc MBH
Cho tam giác ABC có góc A nhọn, vẽ tia Ax vuông góc với AB ( tia AC nằm giữa 2 tia AB và Ax) và trên đó lấy điểm E sao cho AE = AB. Vẽ tia Ay vuông góc với AC ( tia AB nằm giữa 2 tia Ay và AC) và trên đó lấy điểm F sao cho AF = AC.
a) CM: BF = CE
b) Gọi M, N lần lượt là trung điểm của các đoạn thẳng BF, CE. Kẻ AM, AN. CMR: AM vuông góc với AN