Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Buddy
Xem chi tiết
Nguyễn Lê Phước Thịnh
15 tháng 8 2023 lúc 23:00

a: \(\left(\sqrt[n]{a}\right)^n=a\)

mà \(\left(\sqrt[n]{a}\right)=a^{\dfrac{1}{n}}\)

nên \(\left(a^{\dfrac{1}{n}}\right)^n=a\)

b: \(a^{\dfrac{m}{n}}=a^{m\cdot\dfrac{1}{n}}=a^m\cdot a^{\dfrac{1}{n}}=\left(a^{\dfrac{1}{n}}\right)^m\)

Tô Liên Bạch
Xem chi tiết
Tô Liên Bạch
30 tháng 3 2020 lúc 11:36

ai biết làm câu nào thì làm giúp mik nha

Khách vãng lai đã xóa
Tran Le Khanh Linh
30 tháng 3 2020 lúc 12:29

a) Mình nghĩ nên sửa lại đề 1 chút: a-b=3

b) Có 4n-9=2(2n+1)-13

Vì 2n+1 chia hết cho 2n+1 => 2(2n+1) chia hết cho 2n+1

Vậy để 2(2n+1)-13 chia hết cho 2n+1

=> 13 chia hết cho 2n+1

n nguyên => 2n+1 nguyên => 2n+1\(\inƯ\left(13\right)=\left\{-13;-1;1;3\right\}\)

Ta có bảng

2n+1-13-113
2n-14-202
n-7-101

d)Đặt \(A=\frac{1}{2^2}+\frac{1}{2^3}+\frac{1}{2^4}+....+\frac{1}{2^n}\)

Ta có: \(\hept{\begin{cases}\frac{1}{2^2}< \frac{1}{1\cdot2}\\......\\\frac{1}{2^n}< \frac{1}{2^{n-1}\cdot2^n}\end{cases}}\)

\(\Rightarrow A< \frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+....+\frac{1}{2^{n-1}\cdot2^n}\)

\(\Rightarrow A< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{2^{n-1}}-\frac{1}{2^n}\)

\(\Rightarrow A< 1-\frac{1}{2^n}\)(đpcm)

Khách vãng lai đã xóa
Kuramajiva
Xem chi tiết
Nguyễn Việt Lâm
30 tháng 12 2020 lúc 21:34

1. Đề thiếu

2. BĐT cần chứng minh tương đương:

\(a^4+b^4+c^4\ge abc\left(a+b+c\right)\)

Ta có:

\(a^4+b^4+c^4\ge\dfrac{1}{3}\left(a^2+b^2+c^2\right)^2\ge\dfrac{1}{3}\left(ab+bc+ca\right)^2\ge\dfrac{1}{3}.3abc\left(a+b+c\right)\) (đpcm)

3.

Ta có:

\(\left(a^6+b^6+1\right)\left(1+1+1\right)\ge\left(a^3+b^3+1\right)^2\)

\(\Rightarrow VT\ge\dfrac{1}{\sqrt{3}}\left(a^3+b^3+1+b^3+c^3+1+c^3+a^3+1\right)\)

\(VT\ge\sqrt{3}+\dfrac{2}{\sqrt{3}}\left(a^3+b^3+c^3\right)\)

Lại có:

\(a^3+b^3+1\ge3ab\) ; \(b^3+c^3+1\ge3bc\) ; \(c^3+a^3+1\ge3ca\)

\(\Rightarrow2\left(a^3+b^3+c^3\right)+3\ge3\left(ab+bc+ca\right)=9\)

\(\Rightarrow a^3+b^3+c^3\ge3\)

\(\Rightarrow VT\ge\sqrt{3}+\dfrac{6}{\sqrt{3}}=3\sqrt{3}\)

Nguyễn Việt Lâm
30 tháng 12 2020 lúc 21:37

4.

Ta có:

\(a^3+1+1\ge3a\) ; \(b^3+1+1\ge3b\) ; \(c^3+1+1\ge3c\)

\(\Rightarrow a^3+b^3+c^3+6\ge3\left(a+b+c\right)=9\)

\(\Rightarrow a^3+b^3+c^3\ge3\)

5.

Ta có:

\(\dfrac{a}{b}+\dfrac{b}{c}\ge2\sqrt{\dfrac{a}{c}}\) ; \(\dfrac{a}{b}+\dfrac{c}{a}\ge2\sqrt{\dfrac{c}{b}}\) ; \(\dfrac{b}{c}+\dfrac{c}{a}\ge2\sqrt{\dfrac{b}{a}}\)

\(\Rightarrow\sqrt{\dfrac{b}{a}}+\sqrt{\dfrac{c}{b}}+\sqrt{\dfrac{a}{c}}\le\dfrac{a}{b}+\dfrac{b}{c}+\dfrac{c}{a}=1\)

Nguyễn Việt Lâm
30 tháng 12 2020 lúc 21:39

Câu 1:

\(VT=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{n-1}-\dfrac{1}{n}\)

\(VT=1-\dfrac{1}{n}< 1\) (đpcm)

 .
Xem chi tiết
Dương Lam Hàng
11 tháng 2 2018 lúc 20:20

a) Ta có: \(A=\frac{2n+1}{2n-1}=\frac{2n-1+2}{2n-1}=\frac{2n-1}{2n-1}+\frac{2}{2n-1}=1+\frac{2}{2n-1}\)

Để A là một phân số \(\Leftrightarrow2n-1\ne0\Leftrightarrow x\ne\frac{1}{2}\)

b) Để A nhận giá trị nguyên \(\Leftrightarrow2⋮\left(2n-1\right)\Leftrightarrow2n-1\inƯ\left(2\right)=\left\{\pm1;\pm2\right\}\)

Nếu 2n - 1 = 1 => n = 1

Nếu 2n - 1 = -1 => n = 0

Nếu 2n - 1= 2 => n = 3/2

Nếu 2n - 1 = -2 => n = -1/2

Vì \(n\in Z\Rightarrow n=\left\{0;1\right\}\) thì A đạt giá trị nguyên

Nguyễn Xuân Anh
11 tháng 2 2018 lúc 20:49

\(\text{a) }ĐKXĐ:2n-1\ne0\Leftrightarrow n\ne\frac{1}{2}\)

Phản chứng:

\(A=\frac{2n+1}{2n-1}=1+\frac{2}{2n-1}\)(Vậy chúng ta phải chứng minh A là số nguyên)

Để A thuộc Z => \(\frac{2}{2n-1}\in Z\Rightarrow2n-1\inƯ\left(2\right)=\left\{\pm1;\mp2\right\}\)

+ Với 2n-1 =1 => n=1 => A= 3 ( nên a) ko đúng

b)từ ý a) ta có:

Để A thuộc Z => \(\frac{2}{2n-1}\in Z\Rightarrow2n-1\inƯ\left(2\right)=\left\{\pm1;\mp2\right\}\)

+ Với 2n-1=-2=> n= -1/2( loại)

+Với 2n-1=-1 => n= 0 ( chọn)

+ Với 2n-1=1=> n= 1 ( chọn)   

+ Với 2n-1 =2 => n=3/2( loại)

vậy......

cao thi hoai thuong
Xem chi tiết
♫❤_Nhok✖Cute_❤♫
Xem chi tiết
Huỳnh Quang Sang
15 tháng 4 2019 lúc 19:41

a, Để A là phân số thì ta có điều kiện : \(n-1\ne0\) => \(n\ne1\)

Vậy điều kiện của n để A là phân số là \(n\ne1\)

Ta có : \(\frac{5}{n-1}\Rightarrow n-1\inƯ(5)\)

=> A là số nguyên <=> \(n-1\in\left\{\pm1;\pm5\right\}\)

Lập bảng :

n - 11-15-5
n206-4

b, Gọi d là ƯCLN\((n,n+1)\) \((d\inℕ^∗)\)

Ta có : \(\hept{\begin{cases}n⋮d\\n+1⋮d\end{cases}}\)

\(\Rightarrow(n+1)-n⋮d\)

\(\Rightarrow1⋮d\)

\(\Rightarrow d=1\)

Vậy : .....

Điều kiện của n để A là phân số là n khác 1 và n thuộc z( mk ko chắc chắn lắm)

để A là số nguyên thì n-1 chia hết cho 5

suy ra n-1 thuộc ước của 5 ={ 1;-1;5;-5}

* Xét trường hợp:

TH1 n-1=1 suy ra n=2(TM)

TH2 n-1=-1 suy ra n=0 (TM)

TH3 n-1=5 suy ra n=6(TM)

TH4n-1=-5 suy ra n=-4(TM)                                  ( MK NGHĨ BN NÊN LẬP BẢNG VÀ DÙNG KÍ HIỆU NHÉ!)

vậy n thuộc { -4;0;2;6}

# HỌC TỐT #

Quách Thu Quyên
15 tháng 4 2019 lúc 19:46

a) để â là phân số thì n-1 khác 0 suy ra n khác 1 và n thuộc Z 

để A là số nguyên thì n-1 khác 0 n thuộc Z và 5 chia hết cho n-1 

suy ra n-1 thuộc Ư ( 5 ) 

suy ra n-1 thuộc { 1;-1;5;-5} 

suy ra n thuộc {2;0;6;-4}

vậy .......

b) Gọi ước chung (n và n+1 )=d

suy ra n chia hết cho d

           n+1 chia hết cho d

suy ra (n+1)-n chia hết cho d

suy ra 1 chia hết cho d

suy ra d = 1 

vậy .....

Nguyễn Thị MInh Huyề
Xem chi tiết
Edogawa Conan
16 tháng 7 2019 lúc 21:33

2. Ta có:

\(3^{n+2}-2^{n+2}+3^n-2^n\)

\(\left(3^n.9+3^n\right)-\left(2^{n-1}.8+2^{n-1}.2\right)\)

\(3^n\left(9+1\right)-2^{n-1}\left(8+2\right)\)

\(3^n.10-2^{n-1}.10\)

\(\left(3^n-2^{n-1}\right).10⋮10\forall n\)

Vậy \(3^{n+2}-2^{n+2}+3^n-2^n⋮10\)

Nguyễn Thị Tuyết Nhung
Xem chi tiết
thiên thần dễ thương
5 tháng 12 2015 lúc 20:10

đúng là ko có bài nào dễ trong ngày hôm nay

Lê Thanh Bình
5 tháng 12 2015 lúc 20:07

Bạn ghi nhỏ lại nhé. Hơn nũa bạn nên tách riêng từng câu hỏi, làm vầy nhiều lắm

hoang thi hanh
12 tháng 12 2015 lúc 21:54

a) Ta co :1/5^2+1/6^2+1/7^2+...+1/100^2<1/4.5+1/5.6+1/6.7+...+1/99.100

Dat A=1/4.5+1/5.6+...+1/99.100.   B=1/5^2+1/6^2+...+1/100^2

A=1/4-1/5+1/5-1/6+1/6-1/7+...+1/99-1/100

=1/4-1/100=6/25

Ma1/6<6/25<1/4.Ta lại cóA<6/25    Vậy:1/6<1/5^2+1/6^2+1/7^2+...+1/100^2<1/4

Naruto Love
Xem chi tiết