cho sô thực a sao cho a+\(\frac{1}{a}\)là số nguyên .chứng minh rằng \(a^n+\frac{1}{a^n}\)là số nguyên
Cho a là một số thực dương.
a) Với n là số nguyên dương, hãy thử định nghĩa \({a^{\frac{1}{n}}}\) sao cho \({\left( {{a^{\frac{1}{n}}}} \right)^n} = a.\)
b) Từ kết quả của câu a, hãy thử định nghĩa \({a^{\frac{m}{n}}},\) với m là số nguyên và n là số nguyên dương, sao cho \({a^{\frac{m}{n}}} = {\left( {{a^{\frac{1}{n}}}} \right)^m}.\)
a: \(\left(\sqrt[n]{a}\right)^n=a\)
mà \(\left(\sqrt[n]{a}\right)=a^{\dfrac{1}{n}}\)
nên \(\left(a^{\dfrac{1}{n}}\right)^n=a\)
b: \(a^{\dfrac{m}{n}}=a^{m\cdot\dfrac{1}{n}}=a^m\cdot a^{\dfrac{1}{n}}=\left(a^{\dfrac{1}{n}}\right)^m\)
tìm các chữ số a và b sao cho a-b =4 và \(\overline{87ab}\)\(⋮\)9
b tìm các sô nguyên n sao cho 4n-9 chia hết cho 2n+1
c tìm các số nguyên n sao cho \(\frac{4n-9}{n+1}\) là phân sô tối giản
da chứng minh \(\frac{1}{2^2}\)+\(\frac{1}{2^3}\)+\(\frac{1}{2^4}\)+ ... + \(\frac{1}{2^n}\)<1
ai biết làm câu nào thì làm giúp mik nha
a) Mình nghĩ nên sửa lại đề 1 chút: a-b=3
b) Có 4n-9=2(2n+1)-13
Vì 2n+1 chia hết cho 2n+1 => 2(2n+1) chia hết cho 2n+1
Vậy để 2(2n+1)-13 chia hết cho 2n+1
=> 13 chia hết cho 2n+1
n nguyên => 2n+1 nguyên => 2n+1\(\inƯ\left(13\right)=\left\{-13;-1;1;3\right\}\)
Ta có bảng
2n+1 | -13 | -1 | 1 | 3 |
2n | -14 | -2 | 0 | 2 |
n | -7 | -1 | 0 | 1 |
d)Đặt \(A=\frac{1}{2^2}+\frac{1}{2^3}+\frac{1}{2^4}+....+\frac{1}{2^n}\)
Ta có: \(\hept{\begin{cases}\frac{1}{2^2}< \frac{1}{1\cdot2}\\......\\\frac{1}{2^n}< \frac{1}{2^{n-1}\cdot2^n}\end{cases}}\)
\(\Rightarrow A< \frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+....+\frac{1}{2^{n-1}\cdot2^n}\)
\(\Rightarrow A< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{2^{n-1}}-\frac{1}{2^n}\)
\(\Rightarrow A< 1-\frac{1}{2^n}\)(đpcm)
Câu 1: Chứng minh \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{(n-1)n}\) với ∀n∈\(N^*\)
Câu 2: Cho a,b,c là các số thực dương. Chứng minh rằng: \(\frac{a^4+b^4+c^4}{a+b+c}\geq abc\).
Câu 3: Cho các số thực dương a,b,c thỏa mãn \(ab+bc+ca=3\). Chứng minh rằng: \(\sqrt{a^6+b^6+1}+\sqrt{b^6+c^6+1}+\sqrt{c^6+a^6+1}\geq 3\sqrt{3}\)
Câu 4: Cho các số thực không âm a,b,c thỏa mãn \(a+b+c=3\).Chứng minh rằng: \(a^3+b^3+c^3\geq 3\)
Câu 5: Với \(a,b,c>0\) thỏa mãn điều kiện \(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}=1\). Chứng minh rằng: \(\sqrt\frac{b}{a}+\sqrt\frac{c}{b}+\sqrt\frac{a}{c}\leq 1\)
1. Đề thiếu
2. BĐT cần chứng minh tương đương:
\(a^4+b^4+c^4\ge abc\left(a+b+c\right)\)
Ta có:
\(a^4+b^4+c^4\ge\dfrac{1}{3}\left(a^2+b^2+c^2\right)^2\ge\dfrac{1}{3}\left(ab+bc+ca\right)^2\ge\dfrac{1}{3}.3abc\left(a+b+c\right)\) (đpcm)
3.
Ta có:
\(\left(a^6+b^6+1\right)\left(1+1+1\right)\ge\left(a^3+b^3+1\right)^2\)
\(\Rightarrow VT\ge\dfrac{1}{\sqrt{3}}\left(a^3+b^3+1+b^3+c^3+1+c^3+a^3+1\right)\)
\(VT\ge\sqrt{3}+\dfrac{2}{\sqrt{3}}\left(a^3+b^3+c^3\right)\)
Lại có:
\(a^3+b^3+1\ge3ab\) ; \(b^3+c^3+1\ge3bc\) ; \(c^3+a^3+1\ge3ca\)
\(\Rightarrow2\left(a^3+b^3+c^3\right)+3\ge3\left(ab+bc+ca\right)=9\)
\(\Rightarrow a^3+b^3+c^3\ge3\)
\(\Rightarrow VT\ge\sqrt{3}+\dfrac{6}{\sqrt{3}}=3\sqrt{3}\)
4.
Ta có:
\(a^3+1+1\ge3a\) ; \(b^3+1+1\ge3b\) ; \(c^3+1+1\ge3c\)
\(\Rightarrow a^3+b^3+c^3+6\ge3\left(a+b+c\right)=9\)
\(\Rightarrow a^3+b^3+c^3\ge3\)
5.
Ta có:
\(\dfrac{a}{b}+\dfrac{b}{c}\ge2\sqrt{\dfrac{a}{c}}\) ; \(\dfrac{a}{b}+\dfrac{c}{a}\ge2\sqrt{\dfrac{c}{b}}\) ; \(\dfrac{b}{c}+\dfrac{c}{a}\ge2\sqrt{\dfrac{b}{a}}\)
\(\Rightarrow\sqrt{\dfrac{b}{a}}+\sqrt{\dfrac{c}{b}}+\sqrt{\dfrac{a}{c}}\le\dfrac{a}{b}+\dfrac{b}{c}+\dfrac{c}{a}=1\)
Câu 1:
\(VT=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{n-1}-\dfrac{1}{n}\)
\(VT=1-\dfrac{1}{n}< 1\) (đpcm)
Bài 1: Cho A=\(\frac{2n+1}{2n-1}\) với n thuộc Z
a) Chứng minh rằng A là 1 phân số
b) Tìm số nguyên n để A nhận giá trị nguyên.
a) Ta có: \(A=\frac{2n+1}{2n-1}=\frac{2n-1+2}{2n-1}=\frac{2n-1}{2n-1}+\frac{2}{2n-1}=1+\frac{2}{2n-1}\)
Để A là một phân số \(\Leftrightarrow2n-1\ne0\Leftrightarrow x\ne\frac{1}{2}\)
b) Để A nhận giá trị nguyên \(\Leftrightarrow2⋮\left(2n-1\right)\Leftrightarrow2n-1\inƯ\left(2\right)=\left\{\pm1;\pm2\right\}\)
Nếu 2n - 1 = 1 => n = 1
Nếu 2n - 1 = -1 => n = 0
Nếu 2n - 1= 2 => n = 3/2
Nếu 2n - 1 = -2 => n = -1/2
Vì \(n\in Z\Rightarrow n=\left\{0;1\right\}\) thì A đạt giá trị nguyên
\(\text{a) }ĐKXĐ:2n-1\ne0\Leftrightarrow n\ne\frac{1}{2}\)
Phản chứng:
\(A=\frac{2n+1}{2n-1}=1+\frac{2}{2n-1}\)(Vậy chúng ta phải chứng minh A là số nguyên)
Để A thuộc Z => \(\frac{2}{2n-1}\in Z\Rightarrow2n-1\inƯ\left(2\right)=\left\{\pm1;\mp2\right\}\)
+ Với 2n-1 =1 => n=1 => A= 3 ( nên a) ko đúng
b)từ ý a) ta có:
Để A thuộc Z => \(\frac{2}{2n-1}\in Z\Rightarrow2n-1\inƯ\left(2\right)=\left\{\pm1;\mp2\right\}\)
+ Với 2n-1=-2=> n= -1/2( loại)
+Với 2n-1=-1 => n= 0 ( chọn)
+ Với 2n-1=1=> n= 1 ( chọn)
+ Với 2n-1 =2 => n=3/2( loại)
vậy......
cho A =\(\frac{2n+3}{n+1}\)
chứng minh rằng với mọi n là số nguyên dương thi A là 1 phân số tối giản
1/a/ Cho biểu thức A =\(\frac{5}{n-1}\),(n \(\in\)z)
Tìm điều kiện của n để A là phân sô? Tìm tất cả giá trị nguyên của n để A là số nguyên?
b/ Chứng minh phân số \(\frac{n}{n+1}\)tối giản; ( n \(\in\)N và n \(\ne\)0 )
a, Để A là phân số thì ta có điều kiện : \(n-1\ne0\) => \(n\ne1\)
Vậy điều kiện của n để A là phân số là \(n\ne1\)
Ta có : \(\frac{5}{n-1}\Rightarrow n-1\inƯ(5)\)
=> A là số nguyên <=> \(n-1\in\left\{\pm1;\pm5\right\}\)
Lập bảng :
n - 1 | 1 | -1 | 5 | -5 |
n | 2 | 0 | 6 | -4 |
b, Gọi d là ƯCLN\((n,n+1)\) \((d\inℕ^∗)\)
Ta có : \(\hept{\begin{cases}n⋮d\\n+1⋮d\end{cases}}\)
\(\Rightarrow(n+1)-n⋮d\)
\(\Rightarrow1⋮d\)
\(\Rightarrow d=1\)
Vậy : .....
Điều kiện của n để A là phân số là n khác 1 và n thuộc z( mk ko chắc chắn lắm)
để A là số nguyên thì n-1 chia hết cho 5
suy ra n-1 thuộc ước của 5 ={ 1;-1;5;-5}
* Xét trường hợp:
TH1 n-1=1 suy ra n=2(TM)
TH2 n-1=-1 suy ra n=0 (TM)
TH3 n-1=5 suy ra n=6(TM)
TH4n-1=-5 suy ra n=-4(TM) ( MK NGHĨ BN NÊN LẬP BẢNG VÀ DÙNG KÍ HIỆU NHÉ!)
vậy n thuộc { -4;0;2;6}
# HỌC TỐT #
a) để â là phân số thì n-1 khác 0 suy ra n khác 1 và n thuộc Z
để A là số nguyên thì n-1 khác 0 n thuộc Z và 5 chia hết cho n-1
suy ra n-1 thuộc Ư ( 5 )
suy ra n-1 thuộc { 1;-1;5;-5}
suy ra n thuộc {2;0;6;-4}
vậy .......
b) Gọi ước chung (n và n+1 )=d
suy ra n chia hết cho d
n+1 chia hết cho d
suy ra (n+1)-n chia hết cho d
suy ra 1 chia hết cho d
suy ra d = 1
vậy .....
Bài 1:1, Cho a,b,c là các số hữu tỉ khác 0 sao cho
\(\frac{a+b-c}{c}=\frac{a-b+c}{b}=\frac{-a+b+c}{a}\)
2,Chứng minh rằng : Với mọi số nguyên dương n thì \(3^{n+2}-2^{n+2}+3^n-2^n⋮10\)
2. Ta có:
\(3^{n+2}-2^{n+2}+3^n-2^n\)
= \(\left(3^n.9+3^n\right)-\left(2^{n-1}.8+2^{n-1}.2\right)\)
= \(3^n\left(9+1\right)-2^{n-1}\left(8+2\right)\)
= \(3^n.10-2^{n-1}.10\)
= \(\left(3^n-2^{n-1}\right).10⋮10\forall n\)
Vậy \(3^{n+2}-2^{n+2}+3^n-2^n⋮10\)
Câu 1 a. CHỨNG MINH RẰNG : \(\frac{1}{6}<\frac{1}{5^2}+\frac{1}{6^2}+\frac{1}{7^2}+....+\frac{1}{100^2}<\frac{1}{4}\)
b.TÌM SỐ NGUYÊN A ĐỂ : \(\frac{2A+9}{A+3}+\frac{5A+17}{A+3}-\frac{3A}{A+3}\)LÀ SỐ NGUYÊN.
Câu 2 TÌM N LÀ SỐ TỰ NHIÊN ĐỂ : A=(N+5)(N+6)CHIA HẾT CHO 6N
Câu 3 TÌM ĐA THỨC BẬC HAI SAO CHO: f(x)-f(x)=x.ÁP DỤNG TÍNH TỔNG : S=1+2+3+4+...+n.
đúng là ko có bài nào dễ trong ngày hôm nay
Bạn ghi nhỏ lại nhé. Hơn nũa bạn nên tách riêng từng câu hỏi, làm vầy nhiều lắm
a) Ta co :1/5^2+1/6^2+1/7^2+...+1/100^2<1/4.5+1/5.6+1/6.7+...+1/99.100
Dat A=1/4.5+1/5.6+...+1/99.100. B=1/5^2+1/6^2+...+1/100^2
A=1/4-1/5+1/5-1/6+1/6-1/7+...+1/99-1/100
=1/4-1/100=6/25
Ma1/6<6/25<1/4.Ta lại cóA<6/25 Vậy:1/6<1/5^2+1/6^2+1/7^2+...+1/100^2<1/4
Cho a,b là 2 số nguyên dương sao cho \(A=\frac{a^2+b^2}{ab+1}\) nguyên. Chứng minh rằng A là số chính phương.