Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
21 tháng 1 2018 lúc 7:44

Ta có 3x – 2y = 5 ⇒ y = 3 x − 5 2 = 2 x + x − 5 2 = 2 x 2 + x − 5 2 = x + x − 5 2

Hay  y = x + x − 5 2

Đặt x − 5 2 = t t ∈ ℤ ⇒ x = 2t + 5

⇒ y = 2t + 5 + t ⇔ y = 3t + 5 ⇒ x = 5 + 2 t y = 5 + 3 t t ∈ ℤ

Đáp án: D

Phạm thị Mỹ Hằng
Xem chi tiết
Akai Haruma
18 tháng 3 2021 lúc 2:02

Lời giải:

PT $\Leftrightarrow x^3+3x-5=x^2y+2y=y(x^2+2)$

$\Rightarrow y=\frac{x^3+3x-5}{x^2+2}$

Để $y$ nguyên thì $x^3+3x-5\vdots x^2+2$

$\Leftrightarrow x(x^2+2)+x-5\vdots x^2+2$

$\Leftrightarrow x-5\vdots x^2+2(1)$

$\Rightarrow x^2-5x\vdots x^2+2$

$\Leftrightarrow x^2+2-(5x+2)\vdots x^2+2$

$\Leftrightarrow 5x+2\vdots x^2+2(2)$

Từ $(1);(2)\Rightarrow 5(x-5)-(5x+2)\vdots x^2+2$

$\Leftrightarrow 27\vdots x^2+2$. Do $x^2+2\geq 2$ nên:

$\Rightarrow x^2+2\in\left\{3;9;27\right\}$

$\Rightarrow x^2\in\left\{1;7;25\right\}$

Do $x$ nguyên nên $x\in\left\{\pm 1; \pm 5\right\}$

Thay vào $y$ ta tìm được: 

$x=-1\Rightarrow y=-3$

$x=5\Rightarrow y=5$

Phạm Cao Sơn
Xem chi tiết
Bùi Đức Anh
Xem chi tiết
ngonhuminh
9 tháng 4 2018 lúc 17:27

Thiên bình có 102 thứ (1) lớp 8 chưa biết delta     

<=> \(\left(x^2+2\right)y=x^2+3x-5\\ \) 

\(\Leftrightarrow y=\frac{x^2+3x-5}{x^2+2}=1+\frac{3x-7}{x^2+2}\)

\(y\in Z\Leftrightarrow\frac{3x-7}{x^2+2}\in Z\) \(\Leftrightarrow\left|3x-7\right|\ge x^2+2\)=> \(-4\le x\le1\)

vô nghiệm

 <>x^2(x-y)+2(x-y)+x-5=0(1*) 
Denta theox 
1-4(x-y)[2(x-y)-5]>=0 
<>-8(x-y)^2+20(x-y)+1>=0 
<>[-10+V(108)]/-8=<(x-y)=< 
[10+V(108)]/8 
Vì x-y nguyên nên => 
0=<(x-y)=<2 
Vậy để ptr có no nguyên 
điều kiện cần là 
x-y=0 or x-y=1,x-y=2 
Đk đủ:bạn thay lần lượt 
các giá trị của x-y ở trên vào 1* 
nếu tìm đc x nguyên thì kết luận! 
Chúc bạn học tốt 
(V(108) là cb2 của 108)

Dio Brando
Xem chi tiết
Nguyễn Việt Lâm
8 tháng 2 2022 lúc 15:30

Em tham khảo ở đây:

Tìm nghiệm nguyên dương của phương trình sau: \(3^x-2^y=1\)   - Hoc24

Nguyễn Chí Nhân
Xem chi tiết
tth_new
5 tháng 5 2019 lúc 15:18

Dễ thấy 555 và 3x đều chia hết cho 3 nên 2y chia hết cho 3.Mà (555;2) = 1 nên y chia hết cho 3.

Đặt y = 3k (\(k\inℕ^∗\)) suy ra \(3x+6k=555\Leftrightarrow x+2k=185\Rightarrow x=185-2k\)

Do x nguyên dương nên \(185-2k\ge1\Leftrightarrow2k\le184\Leftrightarrow k\le92\)

Kết hợp \(k\inℕ^∗\) suy ra \(1\le k\le92\)

Từ đây suy ra \(\hept{\begin{cases}x=185-2k\\y=3k\end{cases}}\left(1\le k\le92;k\inℕ^∗\right)\)

Ngu Người
Xem chi tiết
Thầy Tùng Dương
Xem chi tiết
Đặng Ngọc Quỳnh
27 tháng 1 2021 lúc 12:52

Ta có: \(\left(x+2y\right)\left(3x+4y\right)=96\) ( x,y nguyên)

Lại có: \(3x+4y-\left(x+2y\right)=2x+2y\) ( chẵn)

=> 3x+4y , x+2y cùng chẵn hoặc cùng lẻ ( 1)

Mà (x+2y)(3x+4y)=96 chẵn 

=> 3x+4y, x+2y cùng chẵn hoặc là một chẵn 1 lẻ ( 2)

Từ (1) và (2) => 3x+4y, x+2y cùng chẵn

Ta có bảng sau: 

3x+4y482244166128
x+2y248424616812
x44-9416-444-26-4-16
y-2171-634121614

Vậy ...

Khách vãng lai đã xóa
Phạm Minh Phương
8 tháng 2 2021 lúc 11:32

x=4; y=1

Khách vãng lai đã xóa
Phạm Thị Hồng Duyên
9 tháng 2 2021 lúc 12:50

ta có 96=6.16

xy là các số nguyên nên 3x+4y>x+2y

do đó xy là các nghiệm nguyên dương của phương trình khi

3x+4y+16

x+2y=6

giẢI hệ ta được x=4 y=1

vậy nghiệm của phương trình là (4,1)

Khách vãng lai đã xóa
Quang Đẹp Trai
Xem chi tiết
Nguyễn Đức Trí
16 tháng 7 2023 lúc 14:02

\(6x^2y^4+3x^2-10y^3=-2\)

\(\Leftrightarrow3x^2\left(2y^3+1\right)-10y^3-5+5=-2\)

\(\Leftrightarrow3x^2\left(2y^3+1\right)-5\left(2y^3+1\right)=-7\)

\(\Leftrightarrow\left(3x^2-5\right)\left(2y^3+1\right)=-7\)

\(\Rightarrow\left(3x^2-5\right);\left(2y^3+1\right)\in\left\{-1;1;-7;7\right\}\)

\(\Rightarrow\left(x;y\right)\in\left\{\left(\pm\dfrac{2}{\sqrt[]{3}};\sqrt[3]{3}\right);\left(\pm\sqrt[]{2};\sqrt[3]{4}\right);\left(\varnothing;0\right);\left(\pm2;-1\right)\right\}\)

\(\Rightarrow\left(x;y\right)\in\left\{\left(\pm2;-1\right)\right\}\left(x;y\in Z\right)\)

 

Tuấn Hồ
16 tháng 7 2023 lúc 14:07

6x2y3 +3x2 - 10y3 = -2

\(_{_{ }^{ }\Leftrightarrow}\) 2y3(3x\(-\) 2) + 3x2 \(-\) 2= -4

\(_{_{ }^{ }\Leftrightarrow}\)\(\left(3x^2-2\right)\left(2y^3+1\right)=-4=-1.4=-2.2\)

Vì x2 \(\ge\)0 nên 3x2 -2 ​​\(\ge\)-2

Ta có các trường hợp:

TH1: \(\left\{{}\begin{matrix}3x^2-2=-1\\2y^3+1=4\end{matrix}\right.\)\(\Leftrightarrow\)\(\left\{{}\begin{matrix}x=\pm\dfrac{1}{\sqrt{3}}\\y=\sqrt[3]{\dfrac{3}{2}}\end{matrix}\right.\)

TH2: ​\(\left\{{}\begin{matrix}3x^2-2=2\\2y^3+1=-2\end{matrix}\right.\)\(\Leftrightarrow\)\(\left\{{}\begin{matrix}x=\pm\dfrac{2}{\sqrt{3}}\\y=\sqrt[3]{\dfrac{-3}{2}}\end{matrix}\right.\)

TH3: \(\left\{{}\begin{matrix}3x^2-2=-2\\2y^3+1=2\end{matrix}\right.\)\(\Leftrightarrow\)\(\left\{{}\begin{matrix}x=0\\y=\sqrt[3]{\dfrac{1}{2}}\end{matrix}\right.\)

Vậy .....