Tìm số tự nhiên x và y, biết : (5x+3y) + (5x-3y)=2022
Tìm x,y là số tự nhiên biết: 5x - 3y = 2xy - 11
Trả lời:
Ta có: 5x - 3y = 2xy - 11
<=> 2 ( 5x - 3y ) = 2 ( 2xy - 11 )
<=> 10x - 6y = 4xy - 22
<=> 10x - 6y = 4xy - 15 - 7
<=> 10x - 6y - 4xy + 15 = - 7
<=> - ( 4xy - 10x + 6y - 15 ) = - 7
<=> 4xy - 10x + 6y - 15 = 7
<=> ( 4xy - 10x ) + ( 6y - 15 ) = 7
<=> 2x ( 2y - 5 ) + 3 ( 2y - 5 ) = 7
<=> ( 2x + 3 ) ( 2y - 5 ) = 7
=> 2x + 3 thuộc ước của 7; 2y - 5 thuộc ước của 7
Mà Ư(7) = { 1; - 1; 7; - 7 }
nên ta có bảng sau:
2x+3 | 1 | -1 | 7 | -7 |
2y-5 | 7 | -7 | 1 | -1 |
x | -1 | -2 | 2 | -5 |
y | 6 | -1 | 3 | 2 |
Mà x, y là số tự nhiên nên cặp ( x ; y ) thỏa mãn đề bài là: ( 2 ; 3 )
Vậy x = 2; y = 3
5x - 3y = 2xy - 11
<=> 3y + 2xy - 5x = 11
<=> 6y + 4xy - 10x = 22
<=> 2y(3 + 2x) - 10x - 15 = 7
<=> 2y(3 + 2x) - 5(3 + 2x) = 7
<=> (2x + 3)(2y - 5) = 7
Lập bảng xét các trường hợp
2x + 3 | 1 | 7 | -1 | -7 |
2y - 5 | 7 | 1 | -7 | -1 |
x | -1 | 2 | -2 | -5 |
y | 6 | 3 | -1 | 2 |
Vậy x = 2 ; y = 3
\(5x-3y=2xy-11\)
\(\Leftrightarrow\)\(10x-6y=4xy-22\)
\(\Leftrightarrow\)\(\left(10x-4xy\right)+\left(15-6y\right)\)\(=-7\)
\(\Leftrightarrow\)\(2x\left(5-2y\right)+3\left(5-2y\right)\)\(=-7\)
\(\Leftrightarrow\)\(\left(5-2y\right)\left(2x+3\right)\)\(=-7\)
Vì \(2x+3\)\(\varepsilon\)\(Ư\left(7\right)\)Nên ta có:
\(2x+3=7;5-2y=1\)
Hoặc \(2x+3=-7;5-2y=1\)
\(\Leftrightarrow\)\(y=3;x=2\) hoặc \(y=2;x=-5\)
Vậy: \(\left(x;y\right)\)\(\varepsilon\)\(\left\{\left(3;2\right);\left(2;-5\right)\right\}\)
Tìm x,y,z biết
1)2x=3y-2x và x+y=14
2)5x=4y+2y và x+y=-56
3)3x+2y=7y-3x và x-y=10
4)7x-2y=5x-3y và 2x+3y=20
5)2x=3y-2x=5z và x-y+z=99
6)5x-2y=4y=3z-4y và x+y-z=70
Tìm đa thức M biết rằng:M+(5x^2-2xy)=6x^2+9xy-y^2.Tính giá trị của M khi x,y thỏa mãn (2x-5)^2020+(3y+4)^2022 <hoặc=0
M=6x^2+9xy-y^2-5x^2+2xy=x^2+11xy-y^2
(2x-5)^2020+(3y+4)^2022<=0
=>x=5/2 và y=-4/3
M=25/4+11*5/2*(-4/3)-16/9=-1159/36
Tìm x,y,z biết:
Tìm x,y,z biết:
a) 7x-2y=5x-3y và 2x+3y=20
b) 2x=3y=4z-2y và x+y+z=45
c) 3x=4y-2x=7z-4y và x+y-2z=10
a.
$7x-2y=5x-3y$
$\Leftrightarrow 2x=-y$. Thay vào điều kiện số 2 ta có:
$-y+3y=20$
$2y=20$
$\Rightarrow y=10$.
$x=\frac{-y}{2}=\frac{-10}{2}=-5$
b.
$2x=3y\Rightarrow \frac{x}{3}=\frac{y}{2}$
$3y=4z-2y\Rightarrow 5y=4z\Rightarrow \frac{y}{4}=\frac{z}{5}$
$\Rightarrow \frac{x}{6}=\frac{y}{4}=\frac{z}{5}$
Áp dụng tính chất dãy tỉ số bằng nhau:
$\frac{x}{6}=\frac{y}{4}=\frac{z}{5}=\frac{x+y+z}{6+4+5}=\frac{45}{15}=3$
$\Rightarrow x=6.3=18; y=4.3=12; z=5.3=15$
c.
$3x=4y-2x$
$\Rightarrow 5x=4y\Rightarrow x=\frac{4}{5}y$
$3x=7z-4y$
$\Leftrightarrow \frac{12}{5}y=7z-4y$
$\Leftrightarrow \frac{32}{5}y=7z\Rightarrow z=\frac{32}{35}y$
Khi đó:
$x+y-2z=10$
$\frac{4}{5}y+y-2.\frac{32}{35}y=10$
$y.\frac{-1}{35}=10$
$y=-350$
$x=\frac{4}{5}y=\frac{4}{5}.(-350)=-280$
$z=\frac{32}{35}y=\frac{32}{35}.(-350)=-320$
Tìm các số tự nhiên x;y biết:
a, x^2(y-2)=8
b, xy+3y+5x+15+0
Ai giải chi tiết ra mình tích cho 2 LIKE
tìm x,y biết
5x=3y và y-x=8
Ta có:\(y-x=8\Rightarrow y=8+x\)
Thay vào 5x=3y ta đc:
5x=3(8+x)
=>5x=24+3x
=>2x=24
=>x=12
Ta có: \(5x=3y\)
nên \(\dfrac{x}{\dfrac{1}{5}}=\dfrac{y}{\dfrac{1}{3}}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{\dfrac{1}{5}}=\dfrac{y}{\dfrac{1}{3}}=\dfrac{y-x}{\dfrac{1}{3}-\dfrac{1}{5}}=\dfrac{8}{\dfrac{2}{15}}=60\)
Do đó: x=12; y=20
Giải:
Ta có:
\(5x=3y\Rightarrow\dfrac{x}{3}=\dfrac{y}{5}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\dfrac{x}{3}=\dfrac{y}{5}=\dfrac{y-x}{5-3}=\dfrac{8}{2}=4\)
\(\dfrac{x}{3}=4\Rightarrow x=4.3=12\)
\(\dfrac{y}{5}=4\Rightarrow y=4.5=20\)
Chúc bạn học tốt!
Tìm số tự nhiên n lẻ để A Chia hết cho B biết \(A=7x^{n-1}y^5-5x^3y^4\) và \(B=x^2y^n\)
Để A chia hết cho B thì
\(\hept{\begin{cases}2\le n-1\\4\ge n\end{cases}}\)
<=> \(3\le n\le4\)
Vậy n cần tìm là 3
Để A : B thì (7xn-1y5-5x3y4): x2yn => 7xn-1y5 : x2yn và 5x3y4:x2yn
=>
*)n-1>=2; 5>=n;
nên n>=3; 5>=n hay 3<=n<=5(1)
*)4>=n(2)
Từ (1);(2) => 3<=n<=4 mà n lẻ nên n=3
Vậy để A : B thì n=3
Tìm số tự nhiên n để đa thức A chia hết cho đa thức B
\(A=3x^{n-1}y^6-5x^{n+1}y^4\) và \(B=2x^3y^n\)
\(A=7x^{n-1}y^5-5x^3y^4\) và \(B=5x^2y^n\)
Ta có :
\(\left(3x^{n-1}y^6-5x^{n+1}y^4\right):2x^3y^n=\frac{3}{2}x^{n-4}y^{6-n}-\frac{5}{2}x^{n-2}y^{4-n}\)
Để A chia hết cho B thì tất cả số mũ của phần biến phải không âm
\(n-4\ge0\)\(\Leftrightarrow\)\(n\ge4\)
\(6-n\ge0\)\(\Leftrightarrow\)\(n\le6\)
\(n-2\ge0\)\(\Leftrightarrow\)\(n\ge2\)
\(4-n\ge0\)\(\Leftrightarrow\)\(n\le4\)
Từ những dữ kiện trên \(\Rightarrow\)\(4\le n\le4\)\(\Rightarrow\)\(n=4\)
Vậy \(n=4\)
Chúc bạn học tốt ~
\(\left(3x^{n-1}y^6-5x^{n+1}y^4\right):2x^3y^n=\frac{3}{2}x^{n-4}y^{6-n}-\frac{5}{2}x^{n-2}y^{4-n}\)
Để \(\left(3x^{n-1}y^6-5x^{n+1}y^4\right)⋮2x^3y^n\) thì các số mũ của phần biến phải không âm, do đó :
\(n-4\ge0\)\(\Leftrightarrow\)\(n\ge4\)
\(6-n\ge0\)\(\Leftrightarrow\)\(n\le6\)
\(n-2\ge0\)\(\Leftrightarrow\)\(n\ge2\)
\(4-n\ge0\)\(\Leftrightarrow\)\(n\le4\)
\(\Rightarrow\)\(4\le n\le4\)\(\Rightarrow\)\(n=4\)
\(\left(7x^{n-1}y^5-5x^3y^4\right):5x^2y^n=\frac{7}{5}x^{n-3}y^{5-n}-xy^{4-n}\)
Để \(\left(7x^{n-1}y^5-5x^3y^4\right)⋮5x^2y^n\) thì các số mũ của phần biến phải không âm, do đó :
\(n-3\ge0\)\(\Leftrightarrow\)\(n\ge3\)
\(5-n\ge0\)\(\Leftrightarrow\)\(n\le5\)
\(4-n\ge0\)\(\Leftrightarrow\)\(n\le4\)
\(\Rightarrow\)\(3\le n\le4\)\(\Rightarrow\)\(n\in\left\{3;4\right\}\)
Chúc bạn học tốt ~
tìm các cặp số tự nhiên x, y biết:
xy+5x+5y=92xy+5x-2y=105xy-3x+2y-11=0xy-2x+y-4=0xy-x+2y-2=42xy+2x+3y=12nhanh minh tick
1. xy + 5x + 5y = 92
=> (xy + 5x) + (5y + 25) = 92 + 25
=> x(y + 5) + 5(y + 5) = 117
=> (x + 5)(y + 5) = 117
=> x + 5 \(\in\)Ư(117) = {-1;1;-3;3;-9;9;-13;13;-39;39;-117;117}
Mà x >= 0 => x + 5 >= 5
=> x + 5 \(\in\){9;13;39;117}
Ta có bảng sau:
x + 5 | 9 | 13 | 39 | 117 |
x | 4 | 8 | 34 | 112 |
y + 5 | 13 | 9 | 3 | 1 |
y | 8 | 4 | -2 (loại) | -4 (loại) |
Vậy; (x;y) \(\in\){(4;8);(8;4)}
các câu còn lại tương tự như bài mình vừa làm