GPT : \(2\sqrt{\left(1-x\right)\left(x-4\right)}=\frac{5x+4}{x-5}\)
gpt:
\(3\left(x^2-3x+1\right)+\sqrt{3\left(x^4+x^2+1\right)}=0\)
\(\sqrt[3]{x^3+5x^2}-1=\sqrt{\frac{5x^2-2}{6}}\)
GPT: \(\log_2\left(\sqrt{x^2-5x+5}+1\right)+\log_3\left(x^2-5x+7\right)=2\)
Đặt \(\sqrt{x^2-5x+5}=t>0\)
\(\Rightarrow log_2\left(t+1\right)+log_3\left(t^2+2\right)-2=0\)
Nhận thấy \(t=1\) là 1 nghiệm của pt
Xét hàm \(f\left(t\right)=log_2\left(t+1\right)+log_3\left(t^2+2\right)-2\)
\(f'\left(t\right)=\dfrac{1}{\left(t+1\right)ln2}+\dfrac{2t}{\left(t^2+2\right)ln3}>0\Rightarrow f\left(t\right)\) đồng biến
\(\Rightarrow f\left(t\right)\) có tối đa 1 nghiệm
\(\Rightarrow t=1\) là nghiệm duy nhất của pt
\(\Rightarrow\sqrt{x^2-5x+5}=1\Rightarrow\left[{}\begin{matrix}x=1\\x=4\end{matrix}\right.\)
Gpt: a) \(\sqrt[4]{3\left(x+5\right)}-\sqrt[4]{11-x}=\sqrt[4]{13+x}-\sqrt[4]{3\left(3-x\right)}\)
b) \(\frac{1+2\sqrt{x}-x\sqrt{x}}{3-x-\sqrt{2-x}}=2\left(\frac{1+x\sqrt{x}}{1+x}\right)\) c) \(\sqrt{x+1}+\frac{4\left(\sqrt{x+1}+\sqrt{x-2}\right)}{3\left(\sqrt{x-2}+1\right)^2}=3\)
d) \(\sqrt{\frac{x-2}{x+1}}+\frac{x+2}{\left(\sqrt{x+2}+\sqrt{x-2}\right)^2}=1\) e) \(2x+1+x\sqrt{x^2+2}+\left(x+1\right)\sqrt{x^2+2x+2}=0\)
f) \(\sqrt{2x+3}\cdot\sqrt[3]{x+5}=x^2+x-6\)
f) ĐKXĐ: \(x\ge-\frac{3}{2}\)
Khi đó VT > 0 nên \(VT>0\Rightarrow\left[{}\begin{matrix}x\ge2\\x\le-3\left(L\right)\end{matrix}\right.\)
Lũy thừa 6 cả 2 vế lên PT tương đương:
\( \left( x-3 \right) \left( {x}^{11}+9\,{x}^{10}+6\,{x}^{9}-142\,{x}^{ 8}-231\,{x}^{7}+1113\,{x}^{6}+2080\,{x}^{5}-4604\,{x}^{4}-6908\,{x}^{3 }+13222\,{x}^{2}+10983\,x-15327 \right) =0\)
Cái ngoặc to vô nghiệm vì nó tương đương:
\(\left( x-2 \right) ^{11}+31\, \left( x-2 \right) ^{10}+406\, \left( x -2 \right) ^{9}+2906\, \left( x-2 \right) ^{8}+12281\, \left( x-2 \right) ^{7}+31031\, \left( x-2 \right) ^{6}+46656\, \left( x-2 \right) ^{5}+46648\, \left( x-2 \right) ^{4}+46452\, \left( x-2 \right) ^{3}+44590\, \left( x-2 \right) ^{2}+36015\,x-55223 = 0\)(vô nghiệm với mọi \(x\ge2\))
Vậy x = 3.
PS: Nghiệm đẹp thế này chắc có cách AM-Gm độc đáo nhưng mình chưa nghĩ ra
@Akai Haruma, @Nguyễn Việt Lâm
giúp em vs ạ! Cần gấp ạ
em cảm ơn nhiều!
GPT:\(\frac{\left(x+1\right)\left(x+28\right)\left(x+4\right)\left(x-10\right)\left(-5\right)}{\sqrt{x}\left(x-6\right)^{\frac{1}{2}}}\ln\left(x^2-10\right)=0\)
Nhân tài đâu giúp mình với mình tick cho
a) gpt \(\left(x-1\right)\left(x+2\right)+4\left(x-1\right)\sqrt{\frac{x+2}{x-1}}=12\)
b) ghpt \(\left\{\begin{matrix}2\sqrt{x}\left(1+\frac{1}{x+y}\right)=3\\2\sqrt{y}\left(1-\frac{1}{x+y}\right)=1\end{matrix}\right.\)
a/ \(\left(x-1\right)\left(x+2\right)+4\left(x-1\right)\sqrt{\frac{x+2}{x-1}}=12\)
Điều kiện: \(\left[\begin{matrix}x\le-2\\x>1\end{matrix}\right.\)
Xét \(x\le-2\) thì ta có
\(\left(x-1\right)\left(x+2\right)+4\left(x-1\right)\sqrt{\frac{x+2}{x-1}}=12\)
\(\Leftrightarrow\left(x-1\right)\left(x+2\right)-4\sqrt{\left(x-1\right)\left(x+2\right)}=12\)
Đặt \(\sqrt{\left(x-1\right)\left(x+2\right)}=a\left(a\ge0\right)\) thì pt thành
\(a^2-4a-12=0\)
\(\Leftrightarrow\left[\begin{matrix}a=-2\left(l\right)\\a=6\end{matrix}\right.\)
\(\Rightarrow\sqrt{\left(x-1\right)\left(x+2\right)}=6\)
\(\Leftrightarrow x^2+x-38=0\)
\(\Leftrightarrow\left[\begin{matrix}x=-\frac{1}{2}+\frac{3\sqrt{17}}{2}\left(l\right)\\x=-\frac{1}{2}-\frac{3\sqrt{17}}{2}\end{matrix}\right.\)
Trường hợp x > 1 làm tương tự nhé
Bài 3 : Xét dấu biểu thức sau :
1 , \(f\left(x\right)=\frac{x-7}{4x^2-19x+12}\)
2 , \(f\left(x\right)=\frac{11x+3}{-x^2+5x-7}\)
3 , \(f\left(x\right)=\frac{3x-2}{x^3-3x^2+2}\)
4 , \(f\left(x\right)=\frac{x^2+4x-12}{\sqrt{6}x^2+3x+\sqrt{2}}\)
5 , \(f\left(x\right)=\frac{x^2-3x-2}{-x^2+x-1}\)
6 , \(f\left(x\right)=\frac{x^3-5x+4}{x^4-4x^3+8x-5}\)
7 , \(f\left(x\right)=\frac{\left(x+3\right)\left(x-2\right)\left(-2x^2+x-1\right)}{\left(2x-5\right)\left(x^2+3x-10\right)}\)
8 , \(f\left(x\right)=\left(-x^2+x-1\right)\left(6x^2-5x+1\right)\)
9 , \(f\left(x\right)=\frac{x^2-x-2}{-x^2+3x+4}\)
10 , \(f\left(x\right)=\left(x^2-5x+4\right)\left(2-5x+2x^2\right)\)
1.
\(f\left(x\right)=\frac{x-7}{\left(x-4\right)\left(4x-3\right)}\)
Vậy:
\(f\left(x\right)\) ko xác định tại \(x=\left\{\frac{3}{4};4\right\}\)
\(f\left(x\right)=0\Rightarrow x=7\)
\(f\left(x\right)>0\Rightarrow\left[{}\begin{matrix}\frac{3}{4}< x< 4\\x>7\end{matrix}\right.\)
\(f\left(x\right)< 0\Rightarrow\left[{}\begin{matrix}x< \frac{3}{4}\\4< x< 7\end{matrix}\right.\)
2.
\(f\left(x\right)=\frac{11x+3}{-\left(x-\frac{5}{2}\right)^2-\frac{3}{4}}\)
Vậy:
\(f\left(x\right)=0\Rightarrow x=-\frac{3}{11}\)
\(f\left(x\right)>0\Rightarrow x< -\frac{3}{11}\)
\(f\left(x\right)< 0\Rightarrow x>-\frac{3}{11}\)
3.
\(f\left(x\right)=\frac{3x-2}{\left(x-1\right)\left(x^2-2x-2\right)}\)
Vậy:
\(f\left(x\right)\) ko xác định khi \(x=\left\{1;1\pm\sqrt{3}\right\}\)
\(f\left(x\right)=0\Rightarrow x=\frac{2}{3}\)
\(f\left(x\right)>0\Rightarrow\left[{}\begin{matrix}x< 1-\sqrt{3}\\\frac{2}{3}< x< 1\\x>1+\sqrt{3}\end{matrix}\right.\)
\(f\left(x\right)< 0\Rightarrow\left[{}\begin{matrix}1-\sqrt{3}< x< \frac{2}{3}\\1< x< 1+\sqrt{3}\end{matrix}\right.\)
4.
\(f\left(x\right)=\frac{\left(x-2\right)\left(x+6\right)}{\sqrt{6}\left(x+\frac{\sqrt{6}}{4}\right)^2+\frac{8\sqrt{2}-3\sqrt{6}}{8}}\)
Vậy:
\(f\left(x\right)=0\Rightarrow x=\left\{-6;2\right\}\)
\(f\left(x\right)>0\Rightarrow\left[{}\begin{matrix}x< -6\\x>2\end{matrix}\right.\)
\(f\left(x\right)< 0\Rightarrow-6< x< 2\)
5.
\(f\left(x\right)=\frac{x^2-3x-2}{-\left(x-\frac{1}{2}\right)^2-\frac{3}{4}}\)
Vậy:
\(f\left(x\right)=0\Rightarrow x=\frac{3\pm\sqrt{17}}{2}\)
\(f\left(x\right)>0\Rightarrow\frac{3-\sqrt{17}}{2}< x< \frac{3+\sqrt{17}}{2}\)
\(f\left(x\right)< 0\Rightarrow\left[{}\begin{matrix}x< \frac{3-\sqrt{17}}{2}\\x>\frac{3+\sqrt{17}}{2}\end{matrix}\right.\)
6.
\(f\left(x\right)=\frac{\left(x-1\right)\left(x^2+x-4\right)}{\left(x-1\right)^2\left(x^2-2x-5\right)}=\frac{x^2+x-4}{\left(x-1\right)\left(x^2-2x-5\right)}\)
Vậy:
\(f\left(x\right)\) ko xác định khi \(x=\left\{1;1\pm\sqrt{6}\right\}\)
\(f\left(x\right)=0\Rightarrow x=\left\{\frac{-1\pm\sqrt{17}}{2}\right\}\)
\(f\left(x\right)>0\Rightarrow\left[{}\begin{matrix}\frac{-1-\sqrt{17}}{2}< x< 1-\sqrt{6}\\1< x< \frac{-1+\sqrt{17}}{2}\\x>1+\sqrt{6}\end{matrix}\right.\)
\(f\left(x\right)< 0\Rightarrow\left[{}\begin{matrix}x< \frac{-1-\sqrt{17}}{2}\\1-\sqrt{6}< x< 1\\\frac{-1+\sqrt{17}}{2}< x< 1+\sqrt{6}\end{matrix}\right.\)
Rút gọn rồi tính giá trị của biểu thức:
A= \(\sqrt{\frac{\left(x-6^{ }\right)^4}{\left(5-x\right)^2}}+\frac{x^2-36}{x-5}\left(x< 5\right)\)tại x = \(\sqrt{\frac{12}{5}}:\sqrt{\frac{48}{5}}.\sqrt{64}\)
B= 5x - \(\sqrt{125}\) + \(\frac{\sqrt{x^3+5x^2}}{\sqrt{x+5}}\left(x>=0\right)\)tại x = \(\sqrt{\frac{65}{17}}:\sqrt{\frac{13}{4}}\)
C= \(\sqrt{\frac{\left(x-2\right)^4}{\left(3-x\right)^2}}+\frac{\sqrt{x^4-2x^2+1}}{x-3}\left(x< 3\right)\)tại x =\(\sqrt{\frac{1}{18}}:\frac{1}{\sqrt{81}}\)
Các bác giúp e vs ạ, hứa sẽ tick, e cảm ơn nhiều!!!!!!!!
Cho \(x=\frac{1}{2}\sqrt{\frac{\sqrt{2}-1}{\sqrt{2}+1}}\)
Tính \(A=\left(4x^5+4x^4-x^3+1\right)^{19}+\left(\sqrt{x^5+4x^4-5x^3+5x+3}\right)^3+\left(\frac{1-\sqrt{2x}}{\sqrt{2x^2+2x}}\right)\)
Ta có:
x = \(\frac{1}{2}\)\(\sqrt{\frac{\sqrt{2}-1}{\sqrt{2}+1}}\)
= \(\frac{1}{2}\)\(\sqrt{\frac{\left(\sqrt{2}-1\right)^2}{1}}\)
= \(\frac{1}{2}\)(\(\sqrt{2}\)-1)
=> 2x = \(\sqrt{2}\)-1
=> (2x)2= ( \(\sqrt{2}\)-1)2
=> 4x2= 2-2\(\sqrt{2}\)+1
=> 4x2= -2( \(\sqrt{2}\)-1)+1
=> 4x2= -4x +1 => 4x2+4x-1=0
Lại có:
A1= (\(4x^5\)+\(4x^4\)- \(x^3\)+1)19
= [ x3( 4x2+4x-1) +1]19
=1
A2=( \(\sqrt{4x^5+4x^4-5x^3+5x+3}\))3
= (\(\sqrt{x^3\left(4x^2+4x-1\right)-x\left(4x^2+4x-1\right)+\left(4x^2+4x-1\right)+4}\))3
= 23=8
A3= \(\frac{1-\sqrt{2x}}{\sqrt{2x^2+2x}}\)
= \(\sqrt{2}\)- \(\sqrt{2}\)\(\sqrt{1-\sqrt{2}}\)
Cộng 3 số vào ta được A
gpt:
\(\sqrt{x}+\sqrt[4]{x\left(1-x\right)}+\sqrt[4]{\left(1-x\right)^3}=\sqrt{1-x}+\sqrt[4]{x^3}+\sqrt[4]{x^2\left(1-x\right)}\)