Giải PT:
| x - 2016 | = 2016xp
giải pt: x^4+√(x²+2016)=2016
giải pt: \(x=2016+\sqrt{2016+\sqrt{x}}\)
làm bừa thui,ai tích mình mình tích lại
Số số hạng là :
Có số cặp là :
50 : 2 = 25 ( cặp )
Mỗi cặp có giá trị là :
99 - 97 = 2
Tổng dãy trên là :
25 x 2 = 50
Đáp số : 50
Nói trước bài này nghiệm xấu lắm -_-
ĐKXĐ : x > 0
Có ; \(x=2016+\sqrt{2016+\sqrt{x}}\)
\(\Leftrightarrow x+\sqrt{x}+\frac{1}{4}=2016+\sqrt{x}+2.\frac{1}{2}\sqrt{2016+\sqrt{x}}+\frac{1}{4}\)
\(\Leftrightarrow\left(\sqrt{x}+\frac{1}{2}\right)^2=\left(\sqrt{2016+\sqrt{x}}+\frac{1}{2}\right)^2\)
\(\Leftrightarrow\sqrt{x}+\frac{1}{2}=\sqrt{2016+\sqrt{x}}+\frac{1}{2}\)
\(\Leftrightarrow\sqrt{x}=\sqrt{2016+\sqrt{x}}\)
\(\Leftrightarrow x=2016+\sqrt{x}\)
\(\Leftrightarrow x-\sqrt{x}-2016=0\)
\(\Leftrightarrow x-2.\frac{1}{2}.\sqrt{x}+\frac{1}{4}-\frac{8065}{4}=0\)
\(\Leftrightarrow\left(\sqrt{x}-\frac{1}{2}\right)^2=\frac{8065}{4}\)
\(\Leftrightarrow\sqrt{x}-\frac{1}{2}=\pm\frac{\sqrt{8065}}{2}\)
\(\Leftrightarrow\sqrt{x}=\frac{1\pm\sqrt{8065}}{2}\)
Mà \(\sqrt{x}\ge0\forall x\Rightarrow\sqrt{x}=\frac{1+\sqrt{8065}}{2}\)
\(\Rightarrow x=\frac{\left(1+\sqrt{8065}\right)^2}{4}=\frac{8066+2\sqrt{8065}}{4}=\frac{4033+\sqrt{8065}}{2}\)(T/m ĐKXĐ)
Vậy \(x=\frac{4033+\sqrt{8065}}{2}\)
Giúp mình giải pt đi : x⁴+√x²+2016=2016
đặt \(\sqrt{x^2+2016}=y\left(y\ge0\right)\) =>\(2016=y^2-x^2\)
khi đó pt trên trở thành
\(x^4+y=y^2-x^2\)
<=> \(\left(x^4-y^2\right)+\left(x^2+y\right)=0\)
<=>\(\left(x^2+y\right)\left(x^2-y\right)+\left(x^2+y\right)=0\)
<=>\(\left(x^2+y\right)\left(x^2-y+1\right)=0\)
<=>\(\orbr{\begin{cases}x^2+y=0\left(loai\right)\\x^2=y-1\end{cases}}\)
với x^2=y-1 thì ta có pt \(x^2=\sqrt{x^2+2016}-1\)
<=>\(\left(\sqrt{x^2+2016}+\frac{1}{2}\right)^2=\frac{8061}{4}\)
đến đây bạn tự giải nốt nha
giải pt
`(2x^2 +x-2016)^2 +4(x^2 -3x-1000)^2 = 4(2x^2 +x-2016)(x^2 -3x-1000)`
Đặt: \(\left\{{}\begin{matrix}a=2x^2+x-2016\\b=x^2-3x-1000\end{matrix}\right.\). Phương trình trở thành:
\(a^2+4b^2=4ab\)
\(\Leftrightarrow a^2-4ab+4b^2=0\)
\(\Leftrightarrow\left(a-2b\right)^2=0\Leftrightarrow a=2b\)
\(\Rightarrow2x^2+x-2016=2\left(x^2-3x-1000\right)\)
\(\Leftrightarrow7x=16\Leftrightarrow x=\dfrac{16}{7}\)
Vậy: \(x=\dfrac{16}{7}\)
Giải PT: \(2016.x^{2017}+2017.y^{2016}=2015\)
Giải PT: \(2016.x^{2017}+2017.y^{2016}=2015\)
Giải PT:
| x - 2016 | = 2016x
We have two cases:
+) If \(x\ge2016\)then \(x-2016\ge0\Rightarrow\left|x-2016\right|=x-2016\)
Equation becomes: \(x-2016=2016x\)
\(\Leftrightarrow2015x=-2016\Leftrightarrow x=\frac{-2016}{2015}\)(not satisfied)
+) If \(x< 2016\)then \(x-2016< 0\Rightarrow\left|x-2016\right|=2016-x\)
Equation becomes: \(2016-x=2016x\)
\(\Leftrightarrow2017x=2016\Leftrightarrow x=\frac{2016}{2017}\)(satisfied)
So \(x=\frac{2016}{2017}\)
Giải PT:
|x-2016|=2016x
ĐK: x>0.
Pt\(\left[{}\begin{matrix}x-2016=2016x\\x-2016=-2016x\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{-2015}{2016}\left(l\right)\\x=\frac{2016}{2017}\end{matrix}\right.\)
Vậy \(S=\left\{\frac{2016}{2017}\right\}\)
Ta có: \(\left|x-2016\right|=2016x\)
\(\Leftrightarrow\left[{}\begin{matrix}x-2016=2016x\\x-2016=-2016x\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x-2016-2016x=0\\x-2016+2016x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}-2015x=2016\\2017x=2016\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{-2016}{2015}\\x=\frac{2016}{2017}\end{matrix}\right.\)
Vậy: \(x\in\left\{-\frac{2016}{2015};\frac{2016}{2017}\right\}\)
Giải pt: x*(2x-7)-4x+2016=0
x*(2x-7)-4x+2016=0
<=>2x2-11x +2016= 0
Vì delta = 112- 4x2x2016= -16007<0
Nên pt vô nghiệm
22222222222222222222222222222222222222