Tính nhanh:
a) 172-14.17+49
b) 20212-20202
Tính Nhanh:
a)1532-532
b)20202-20192+20182-20172+...+22-12
a) \(153^2-53^2=\left(153-53\right)\left(153+53\right)=100.206=20600\)
b)
\(\left(2020^2-2019^2\right)+\left(2018^2-2017^2\right)+...+\left(2^2-1^2\right)\\ =\left(2020+2019\right)\left(2020-2019\right)+\left(2018+2017\right)\left(2018-2017\right)+...+\left(2+1\right)\left(2-1\right)\\ =2020+2019+2018+2017+...+2+1\\ =\dfrac{\left(2020+1\right)2020}{2}=2041210\)
Lời giải:
a. $153^2-53^2=(153-53)(153+53)=100.206=20600$
b.
$2020^2-2019^2+2018^2-2017^2+...+2^2-1^2$
$=(2020^2-2019^2)+(2018^2-2017^2)+...+(2^2-1^2)$
$=(2020-2019)(2020+2019)+(2018-2017)(2018+2017)+...+(2-1)(2+1)$
$=2020+2019+2018+2017+...+2+1$
$=\frac{2020.2021}{2}=2041210$
a) 1532-532=(153-53)(153+53)=100.206=20600
Tính nhanh:
a) -37 +54 +(- 70)+(- 163)+246
b)-359 +181+(-123)+350+(-172)
c)-69 +53 + 46 +(- 94)+(- 14) + 78
d)13 -12 +11 +10 -9 + 8 -7 -6 +5 - 4 +3 +2 -1
a: =17-70-163+246
=-43-163+246
=246-206
=40
Căn bậc hai của 20212+20222+20212*20222 là 1 số nguyên
\(\sqrt{2021^2+2022^2+2021^2.2022^2}\)
\(=\sqrt{2021^2+\left(2021+1\right)^2+\left(2021.2022\right)^2}\)
\(=\sqrt{2021^2+2021^2+2.2021+1+\left(2021.2022\right)^2}\)
\(=\sqrt{2.2021.2022+1+\left(2021.2022\right)^2}\)
\(=\sqrt{\left(2021.2022+1\right)^2}\)
\(=2021.2022+1\) là 1 số nguyên (đpcm)
Tính:
x0x0x : X x 3 – 20202
x0x0x : X x 3 – 20202
= 10101 x 3 – 20202
= 30303 – 20202
= 10101
Câu 1. Kết quả của phép tính 20212022: 20212021 là:
A. 1.
B. 2021.
C. 2022.
D. 20212
Tính hợp lý:
a, 544544 – 444444
b, 131313 – 10101 – 20202
a) 544544 – 444444 = 544.1001 – 444.1001 = 1001.(544 – 444) = 1001.100 = 100100
b) 131313 – 10101 – 20202 = 10101.13 – 10101 – 10101.2
= 10101.(13 – 1 – 2) = 10101.10 = 101010
Tính hợp lý:
a) 544544 - 444444
b) 131313 - 10101 - 20202
Bài 4: Tính nhanh:
131313-10101-20202
\(131313-10101-20202=13\cdot10101-10101-2\cdot10101=10101\left(13-1-2\right)=10101\cdot10=101010\)
1. Thực hiện phép tính:
−1+2−3+4−5+6−7+8−.....−2019+2020−2021
2. Chứng minh A = 102021 + 8 chia hết cho 72.
Bài 1:
$-1+2-3+4-5+6-7+8-...-2019+2020-2021$
$=(2+4+6+8+...+2020)-(1+3+5+...+2021)$
$=(\frac{2020-2}{2}+1).\frac{2020+2}{2}-(\frac{2021-1}{2}+1).\frac{2021+1}{2}=1021110- 1022121=-1011$
Bài 1 cách 2:
$A=-1+2-3+4-5+6-7+8-....-2019+2020-2021$
$=-1+(2-3)+(4-5)+(6-7)+....+(2020-2021)$
$=-1+\underbrace{(-1)+(-1)+...+(-1)}_{1010}=-1+(-1).1010=-1011$
Bài 2:
$A=10^{2021}+8=(2.5)^{2021}+8=2^{2021}.5^{2021}+8$
$=2^3.2^{2018}.5^{2021}+8=8.2^{2018}.5^{2021}+8$
$=8(2^{2018}.5^{2021}+1)\vdots 8(*)$
Mặt khác:
Gọi $\text{B(9)}$ là bội số của $9$
$A=(9+1)^{2021}+8=\text{B(9)}+1+8=\text{B(9)}+9=\text{B(9)}$
$\Rightarrow A\vdots 9(**)$
Từ $(*); (**)$ mà $9,8$ nguyên tố cùng nhau nên $A\vdots (9.8)$ hay $A\vdots 72$