Áp dụng bđt Cô-si, tìm GTNN:\(y=x^2+\frac{2}{x^3};x>0\)
áp dụng BĐT cô-si để tìm GTNN của
\(y=\frac{x^3+1}{x^2};x>0\)
Tìm GTNN của \(M=x^2+3+\frac{1}{x^2+3}\)(Áp dụng BĐT cô-si
Áp dụng BĐT Cô - si cho hai số không âm ta được
\(x^2+3+\frac{1}{x^2+3}\ge2\sqrt{\left(x^2+3\right)\cdot\frac{1}{x^2+3}}=2\sqrt{1}=2\)
Dấu = xảy ra \(\Leftrightarrow x^2+3=\frac{1}{x^2+3}\)
\(\Leftrightarrow\left(x^2+3\right)^2=1\)
\(\Leftrightarrow x^4+6x^2+9=1\)
\(\Leftrightarrow x^4+6x^2+8=0\)
\(\Leftrightarrow\left(x^2+2\right)\left(x^2+4\right)=0\)
\(\Leftrightarrow\left(x^2+2\right)=0\) hoặc \(\left(x^2+4\right)=0\)
\(\Leftrightarrow x^2=-2\) hoặc \(x^2=-4\) (vô nghiệm) (Sai đề r hay s á b, mik nghĩ là \(x^2-3\)ms đúng)
Vậy GTNN của M là 2
cho A=\(\frac{x\sqrt{x}-3}{x-2\sqrt{x}-3}-\frac{2\left(\sqrt{x}-3\right)}{\sqrt{x}+1}+\frac{\sqrt{x}+3}{3-\sqrt{x}}\)
a) rút gọn A
b) Tìm GTNN của A(áp dụng BĐT cô si: A+B\(\ge2\sqrt{AB}\))
Áp dụng bđt cô si tìm max
a) A=-x^2+2x+7
b) B=(x-y)(5+2x-2y)+14
Áp dụng bất đẳng thức cô si để
a)) tìm GTNN của y=x^2 +2/X^3
b) TÌM GTLN của y= x^2/[(x^2+2)^3]
Cái cậu Nguyễn Minh Tuấn kia đã không lm bài rồi lại còn yêu cầu người khác k nữa
Áp dụng BĐT Cô-si để tìm GTLN của các biểu thức :
a) \(y=\frac{x}{2}+\frac{18}{x};x>0\)
b) \(y=\frac{x}{2}+\frac{2}{x-1};x>1\)
c) \(y=\frac{3x}{2}+\frac{1}{x+1};x>-1\)
Áp dụng bất đẳng thức Cô-si, tìm GTNN của biểu thức:
A= x2+\(\frac{2}{x^3}\)
A = \(\frac{x^2}{3}+\frac{x^2}{3}+\frac{x^2}{3}+\frac{1}{x^3}+\frac{1}{x^3}\ge5\sqrt[5]{\frac{1}{27}}\)
dấu bằng xảy ra khi x = \(\sqrt[5]{3}\)
tìm GTNN (giúp mik zs mik cần gấp)
Q=\(\frac{2x}{x^2+x+1}\)
( dùng bđt Cô-si)
Cho x,y thuộc R thỏa mãn \(x\sqrt{1-y^2}+y\sqrt{1-x^2}=1\)
Tính N = x2 + y2 (Áp dụng BĐT cô-si nhak)
áp dụng BĐT buniacopxki,ta có:\(\left(x\sqrt{1-y^2}+y\sqrt{1-x^2}\right)^2\le\left(x^2+y^2\right)\left(1-y^2+1-x^2\right)=\left(x^2+y^2\right)\left(2-\left(x^2+y^2\right)\right)\)
↔\(1\le\left(x^2+y^2\right)\left(2-\left(x^2+y^2\right)\right)\)
Đặt x2+y2=a(a>=0),ta có:\(1\le a\left(2-a\right)\)↔a2-2a+1\(\ge\)0 hay\(\left(a-1\right)^2\ge0\)
dấu = xảy ra khi a=1 do đó x2+y2=1