Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Văn An
Xem chi tiết
Phú Gia
Xem chi tiết
Khanh Lê
21 tháng 7 2016 lúc 9:45

Áp dụng BĐT Cô - si cho hai số không âm ta được

\(x^2+3+\frac{1}{x^2+3}\ge2\sqrt{\left(x^2+3\right)\cdot\frac{1}{x^2+3}}=2\sqrt{1}=2\)

Dấu = xảy ra \(\Leftrightarrow x^2+3=\frac{1}{x^2+3}\)

\(\Leftrightarrow\left(x^2+3\right)^2=1\)

\(\Leftrightarrow x^4+6x^2+9=1\)

\(\Leftrightarrow x^4+6x^2+8=0\)

\(\Leftrightarrow\left(x^2+2\right)\left(x^2+4\right)=0\)

\(\Leftrightarrow\left(x^2+2\right)=0\) hoặc \(\left(x^2+4\right)=0\)

\(\Leftrightarrow x^2=-2\) hoặc \(x^2=-4\) (vô nghiệm) (Sai đề r hay s á b, mik nghĩ là \(x^2-3\)ms đúng)

Vậy GTNN của M là 2 

Điệp Đỗ
Xem chi tiết
Nguyễn Phương Linh
Xem chi tiết
miko hậu đậu
Xem chi tiết
Nguyễn Minh Tuấn
20 tháng 8 2017 lúc 15:48

mình ko biết, bạn k nha

Nàng công chúa lạnh lùng
20 tháng 8 2017 lúc 15:51

Cái cậu Nguyễn Minh Tuấn kia đã không lm bài rồi lại còn yêu cầu người khác k nữa

miko hậu đậu
20 tháng 8 2017 lúc 15:57

Nàng công chúa lạnh lùng bạn biết ko 

oOo_Duy Anh Nguyễn_oOo
Xem chi tiết
Nguyễn Thảo Ly
Xem chi tiết
Vũ Tri Hải
15 tháng 6 2017 lúc 22:16

A = \(\frac{x^2}{3}+\frac{x^2}{3}+\frac{x^2}{3}+\frac{1}{x^3}+\frac{1}{x^3}\ge5\sqrt[5]{\frac{1}{27}}\)

dấu bằng xảy ra khi x = \(\sqrt[5]{3}\)

linh chi
Xem chi tiết
Song Minguk
Xem chi tiết
Neet
16 tháng 10 2016 lúc 12:10

áp dụng BĐT buniacopxki,ta có:\(\left(x\sqrt{1-y^2}+y\sqrt{1-x^2}\right)^2\le\left(x^2+y^2\right)\left(1-y^2+1-x^2\right)=\left(x^2+y^2\right)\left(2-\left(x^2+y^2\right)\right)\)

\(1\le\left(x^2+y^2\right)\left(2-\left(x^2+y^2\right)\right)\)

Đặt x2+y2=a(a>=0),ta có:\(1\le a\left(2-a\right)\)↔a2-2a+1\(\ge\)0 hay\(\left(a-1\right)^2\ge0\)

dấu = xảy ra khi a=1 do đó x2+y2=1