\(y=\frac{x^2}{3}+\frac{x^2}{3}+\frac{x^2}{3}+\frac{1}{x^3}+\frac{1}{x^3}\ge5\sqrt[5]{\frac{x^6}{27x^6}}=\frac{5}{\sqrt[5]{27}}\)
Dấu "=" xảy ra khi \(\frac{x^2}{3}=\frac{1}{x^3}\Leftrightarrow x=\sqrt[5]{3}\)
Áp dụng bất đẳng thức Cô-si cho 2 số không âm là \(x^2\) và \(\frac{2}{x^2}\), ta có:
\(x^2+\frac{2}{x^2}\ge2\sqrt{2}\)
Dấu bằng xảy ra khi \(x^2=\frac{2}{x^2}\) \(\Leftrightarrow x^4=2\)\(\Leftrightarrow x=\pm\sqrt[4]{2}\)
KL: Vậy Min=..... khi x=.....