Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Suga Min
Xem chi tiết
trần thanh thanh
Xem chi tiết
Nguyễn Việt Lâm
19 tháng 9 2021 lúc 17:01

14.

\(y'=2x^3-4x=2x\left(x^2-2\right)=0\Rightarrow\left[{}\begin{matrix}x=0\\x=-\sqrt{2}\\x=\sqrt{2}\end{matrix}\right.\)

\(y''=6x-4\)

\(\Rightarrow y''\left(0\right)=-4< 0\Rightarrow x=0\) là điểm cực đại

\(y\left(0\right)=-3\)

\(\Rightarrow\) Điểm cực đại của đồ thị hàm số là \(\left(0;-3\right)\)

Nguyễn Việt Lâm
19 tháng 9 2021 lúc 17:02

12.

\(y'=3x^2-3=0\Rightarrow\left[{}\begin{matrix}x=1\\x=-1\end{matrix}\right.\)

\(y''=6x\)

\(\Rightarrow\left\{{}\begin{matrix}y''\left(1\right)=6>0\\y''\left(-1\right)=-6< 0\end{matrix}\right.\) \(\Rightarrow x=-1\) là điểm cực đại

\(\Rightarrow\)Giá trị cực đại của hàm số là \(y\left(-1\right)=3\)

Nguyễn Việt Lâm
19 tháng 9 2021 lúc 17:04

2.

\(y'=x^2-2mx+m^2-m+1\)

\(y''=2x-2m\)

Hàm đạt cực đại tại \(x=1\) khi:

\(\left\{{}\begin{matrix}y'\left(1\right)=0\\y''\left(1\right)< 0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}m^2-3m+2=0\\2-2m< 0\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}m=1\\m=2\end{matrix}\right.\\m>1\end{matrix}\right.\) \(\Rightarrow m=2\)

.thuyanh
Xem chi tiết
.thuyanh
4 tháng 10 2023 lúc 19:50

loading...  

mai thanh
Xem chi tiết
mai thanh
16 tháng 9 2021 lúc 16:55

cái hồi nãy thiếu câu hỏi em bổ sung ở dưới này ạ 

em cảm ơn mnundefined

Nguyễn Việt Lâm
17 tháng 9 2021 lúc 16:44

5.

TXĐ: \(D=\left(-\infty;-1\right)\cup\left(-1;+\infty\right)\)

\(y'=\dfrac{2}{\left(x+1\right)^2}>0\) ; \(\forall x\in D\) 

\(\Rightarrow\) Hàm đồng biến trên mỗi khoảng xác định

Hay hàm đồng biến trên \(\left(-\infty;-1\right)\) và \(\left(-1;+\infty\right)\)

6.

\(y=4x^3-4x=0\Rightarrow\left[{}\begin{matrix}x=0\\x=-1\\x=1\end{matrix}\right.\)

Dấu của y' trên trục số:

undefined

Từ đó ta thấy:

Hàm đồng biến trên các khoảng \(\left(-1;0\right)\) và \(\left(1;+\infty\right)\)

Hàm nghịch biến trên các khoảng \(\left(-\infty;-1\right)\) và \(\left(1;+\infty\right)\)

Nguyễn Việt Lâm
17 tháng 9 2021 lúc 16:47

Tìm cực trị

a.

\(f'\left(x\right)=3x^2-3=0\Rightarrow x=\pm1\)

\(f''\left(x\right)=6x\)

\(f''\left(-1\right)=-6< 0\)

\(f''\left(1\right)=6>0\)

\(\Rightarrow x=-1\) là điểm cực đại và \(x=1\) là điểm cực tiểu

b.

\(f'\left(x\right)=-4x^3+4x=0\Rightarrow\left[{}\begin{matrix}x=0\\x=-1\\x=1\end{matrix}\right.\)

\(f''\left(x\right)=-12x^2+4\)

\(f''\left(0\right)=4>0\) ; \(f''\left(-1\right)=-8< 0\) ; \(f''\left(1\right)=-8< 0\)

\(\Rightarrow x=0\) là điểm cực tiểu và \(x=\pm1\) là 2 điểm cực đại

c.

\(f'\left(x\right)=\dfrac{3}{\left(x-1\right)^2}\ne0\) với mọi x thuộc miền xác định

Hàm không có cực trị

mai thanh
Xem chi tiết
Nguyễn Việt Lâm
14 tháng 9 2021 lúc 18:14

3.

Từ BBT ta thấy hàm đồng biến trên các khoảng \(\left(-\infty;-1\right)\) và \(\left(1;+\infty\right)\)

B đúng

4.

Từ BBT ta thấy hàm đồng biến trên các khoảng \(\left(-\infty;-1\right)\) và \(\left(0;1\right)\)

A đúng

1.

B sai (thiếu điều kiện \(f'\left(x\right)=0\) tại hữu hạn điểm)

Nguyễn Việt Lâm
14 tháng 9 2021 lúc 18:55

Câu 2 đề thiếu yêu cầu

Câu 9:

Từ đồ thị ta thấy hàm đồng biến trên các khoảng \(\left(-\infty;0\right)\) và \(\left(2;+\infty\right)\)

\(\Rightarrow\) A đúng do \(\left(-1;0\right)\subset\left(-\infty;0\right)\)

Tớ Học Dốt
Xem chi tiết
Nguyễn Lê Phước Thịnh
1 tháng 7 2021 lúc 22:25

Bài 15:

a) Ta có: \(A=\cos^252^0\cdot\sin45^0+\sin^252^0\cdot\cos45^0\)

\(=\dfrac{\sqrt{2}}{2}\left(\sin^252^0+\cos^252^0\right)\)

\(=\dfrac{\sqrt{2}}{2}\)

b) Ta có: \(B=\tan60^0\cdot\cos^247^0+\sin^247^0\cdot\cot30^0\)

\(=\sqrt{3}\cdot\left(\sin^247^0+\cos^247^0\right)\)

\(=\sqrt{3}\)

Bài 17:

c) Ta có: \(C=\tan1^0\cdot\tan2^0\cdot\tan3^0\cdot\tan4^0\cdot...\cdot\tan89^0\)

\(=\left(\tan1^0\cdot\tan89^0\right)\cdot\left(\tan2^0\cdot\tan88^0\right)\cdot...\cdot\tan45^0\)

\(=1\cdot1\cdot...\cdot1=1\)

mai thanh
Xem chi tiết
mai thanh
Xem chi tiết
Nguyễn Việt Lâm
14 tháng 9 2021 lúc 17:26

Câu 5:

Nhìn BBT trên \(\left(0;+\infty\right)\) ta thấy trên \(\left(0;1\right)\) đồ thị là đường đi xuống (nghịch biến) nên hàm đồng biến trên toàn miền \(\left(0;+\infty\right)\) là sai

Câu 6:

Từ BBT ta thấy hàm nghịch biến trên các khoảng xác định

\(\Rightarrow\) Loại 2 phương án A và B (ở 2 phương án này hàm đồng biến do y' lần lượt là \(\dfrac{3}{\left(x-2\right)^2}>0\)  và \(\dfrac{15}{\left(x+8\right)^2}>0\))

Còn lại 2 phương án C và D, nhìn BBT ta thấy  \(y=2\)  là tiệm cận ngang (giá trị của y tại x vô cực)

\(\lim\limits_{x\rightarrow\infty}\dfrac{2x+1}{x-2}=2\) (đúng) nên chọn C

7.

Từ BBT ta thấy đây là BBT của hàm bậc 3 \(\Rightarrow\) loại B và D

Từ BBT, y'=0 có 2 nghiệm \(x=0,x=2\)

Ở đáp án A, \(y'=x^2+2x=0\Rightarrow x=0;x=-2\) (ktm)

Nên C đúng (\(y'=x^2-2x=0\Rightarrow x=0;2\))

11.

Nhìn đồ thị, ta thấy trên \(\left(-1;0\right)\) đồ thị chỉ có hướng đi lên \(\Rightarrow\) đồng biến trên (-1;0) nên C đúng

(A sai vì trên (-3;0) đồ thị có khoảng đi lên (đồng biến) ở (-1;0)

B sai vì trên (0;2) đồ thị đi xuống => nghịch biến chứ ko phải đồng biến

D sai vì trên (2;3) đồ thị đi lên (đồng biến)

Nguyễn Việt Lâm
14 tháng 9 2021 lúc 16:38

5C, 6C, 7C, 11C

Cả 4 câu đều C luôn, kì quái thật

Lê Ngọc Kiến Nghi
Xem chi tiết
l҉o҉n҉g҉ d҉z҉
10 tháng 5 2016 lúc 18:54

=> 72 - 20x - 36x - 84 = 30x - 240 - 6x + 84

=> (72 - 84 )  - (20x + 36x ) = (30x - 6x ) - 240 + 84

=> -12 - 56x = 24x - 156

=> -12 + 156 = 24x + 56x 

=> 144 = 80x

=> x = 144  : 80

=> x = 9/5

Maga
10 tháng 5 2016 lúc 18:57

=> 72 - 20x - 36x - 84 = 30x - 240 - 6x + 84

=> (72 - 84 )  - (20x + 36x ) = (30x - 6x ) - 240 + 84

=> -12 - 56x = 24x - 156

=> -12 + 156 = 24x + 56x 

=> 144 = 80x

=> x = 144  : 80

=> x = 9/5

nguyễn văn lim
10 tháng 5 2016 lúc 21:19
4(18-5x)-12(3x-7)=15(2x-16)-6(x+14) <=>72-20x-36x+84=30x-240-6x-84 <=>-20x-36x-30x+6x=-240-84-84-72 <=>-80x=-480 <=>x=6 Nghĩ là vậy