Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Lê Song Phương
Xem chi tiết
IR IRAN(Islamic Republic...
10 tháng 9 2023 lúc 14:26

a) \(x^3-4x^2-5x+6=\sqrt[3]{7x^2+9x-4}\)

\(\Leftrightarrow-7x^2-9x+4+x^3+3x^2+4x+2=\sqrt[3]{7x^2+9x-4}\)

\(\Leftrightarrow-\left(7x^2+9x-4\right)+\left(x+1\right)^3+x+1=\sqrt[3]{7x^2+9x-4}\) (*)

Đặt \(\sqrt[3]{7x^2+9x-4}=a;x+1=b\)

Khi đó (*) \(\Leftrightarrow-a^3+b^3+b=a\)

\(\Leftrightarrow\left(b-a\right).\left(b^2+ab+a^2+1\right)=0\)

\(\Leftrightarrow b=a\)

Hay \(x+1=\sqrt[3]{7x^2+9x-4}\)

\(\Leftrightarrow\left(x+1\right)^3=7x^2+9x-4\)

\(\Leftrightarrow x^3-4x^2-6x+5=0\)

\(\Leftrightarrow x^3-4x^2-5x-x+5=0\)

\(\Leftrightarrow\left(x-5\right)\left(x^2+x-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=5\\x=\dfrac{-1\pm\sqrt{5}}{2}\end{matrix}\right.\)

Nguyễn Bá Minh
Xem chi tiết
Nguyễn Tũn
7 tháng 8 2018 lúc 17:11

Hãy tích cho tui đi

vì câu này dễ mặc dù tui ko biết làm 

Yên tâm khi bạn tích cho tui

Tui sẽ ko tích lại bạn đâu

THANKS

Nguyễn Bá Minh
7 tháng 8 2018 lúc 17:50

( x +1 ) ( x + 4 ) = 5 căn ( x^2 + 5x +28 ) (1) 
= ( x + 1 ) ( x + 4 ) = 5 căn [ (x^2 + 5x + 4) + 24 ] 
= ( x + 1 ) ( x + 4 ) = 5 căn [ ( x + 1 ) ( x + 4 ) + 24 ] 
Đặt a = ( x + 1 ) ( x + 4 ) 
(1) <=> a = 5 căn ( a + 24 ) 
<=> a^2 = 25 ( a + 24 ) 
<=> a^2 - 25a - 600 = 0 
<=> a1 = 40 
a2 = -15 

với a = 40 ta có: 
( x + 1 ) ( x + 4 ) = 40 
<=> x^2 + 5x + 4 = 40 
<=> x^2 + 5x - 36 = 0 
<=> x = 4 và x = - 9 

với a = -15, ta có: 
( x + 1 ) ( x + 4 ) = -15 
<=> x^2 + 5x + 4 = -15 
<=> x^2 + 5x + 19 = 0 
delta < 0 => pt vô nghiệm 

Vậy s = { -9; 4}

Tô Mì
Xem chi tiết
Lê Anh Khoa
29 tháng 3 2022 lúc 14:11

1.   3x( x - 2 ) - ( x - 2 ) = 0

<=> ( x-2).(3x-1)  = 0 => x = 2 hoặc x = \(\dfrac{1}{3}\)

2.    x( x-1 ) ( x2 + x + 1 ) - 4( x - 1 )

<=> ( x - 1 ).( x (x^2 + x + 1 ) - 4 ) = 0

(phần này tui giải được x = 1 thôi còn bên kia giải ko ra nha )

\(\left\{{}\begin{matrix}\sqrt{5}x-2y=7\\\sqrt{5}x-5y=10\end{matrix}\right.\)<=> \(\left\{{}\begin{matrix}y=-1\\x=\sqrt{5}\end{matrix}\right.\)

Aliza Hime
29 tháng 3 2022 lúc 14:18

\(1. 3x^2 - 7x +2=0\)

=>\(Δ=(-7)^2 - 4.3.2\)

        \(= 49-24 = 25\)

Vì 25>0 suy ra phương trình có 2 nghiệm phân biệt:

\(x_1\)=\(\dfrac{-\left(-7\right)+\sqrt{25}}{2.3}=\dfrac{7+5}{6}=2\)

\(x_2\)=\(\dfrac{-\left(-7\right)-\sqrt{25}}{2.3}=\dfrac{7-5}{6}=\dfrac{1}{3}\)

 

  

Đào Thu Hiền
Xem chi tiết
Phạm Thùy Linh
Xem chi tiết
Akai Haruma
24 tháng 10 2018 lúc 9:37

Câu 1:

ĐK: \(x\geq -2\)

Đặt \(\sqrt{x+5}=a; \sqrt{x+2}=b(a,b\geq 0)\)

\(\Rightarrow ab=\sqrt{(x+5)(x+2)}=\sqrt{x^2+7x+10}\)

PT trở thành:

\((a-b)(1+ab)=3\)

\(\Leftrightarrow (a-b)(1+ab)=(x+5)-(x+2)=a^2-b^2\)

\(\Leftrightarrow (a-b)(1+ab)-(a-b)(a+b)=0\)

\(\Leftrightarrow (a-b)(1+ab-a-b)=0\)

\(\Leftrightarrow (a-b)(a-1)(b-1)=0\)

\(a\neq b\Rightarrow \left[\begin{matrix} a-1=0\\ b-1=0\end{matrix}\right.\Rightarrow \left[\begin{matrix} a=\sqrt{x+5}=1\\ b=\sqrt{x+2}=1\end{matrix}\right.\)

\(\Rightarrow \left[\begin{matrix} x=-4\\ x=-1\end{matrix}\right.\). Vì $x\geq -2$ nên chỉ có $x=-1$ là nghiệm duy nhất.

Akai Haruma
24 tháng 10 2018 lúc 9:49

Câu 2:

ĐK: \(-4\leq x\leq 4\)

Ta có: \((\sqrt{x+4}-2)(\sqrt{4-x}+2)=2x\)

\(\Leftrightarrow \frac{(x+4)-2^2}{\sqrt{x+4}+2}.(\sqrt{4-x}+2)=2x\)

\(\Leftrightarrow x.\frac{\sqrt{4-x}+2}{\sqrt{x+4}+2}=2x\)

\(\Leftrightarrow x\left(\frac{\sqrt{4-x}+2}{\sqrt{x+4}+2}-2\right)=0\)

\(\Rightarrow \left[\begin{matrix} x=0\\ \sqrt{4-x}+2=2\sqrt{x+4}+4(*)\end{matrix}\right.\)

Xét $(*)$

Đặt \(\sqrt{4-x}=a; \sqrt{x+4}=b\) thì ta có hệ:

\(\left\{\begin{matrix} a^2+b^2=8\\ a+2=2b+4\end{matrix}\right.\Rightarrow \left\{\begin{matrix} a^2+b^2=8\\ a=2(b+1)\end{matrix}\right.\)

\(\Rightarrow 4(b+1)^2+b^2=8\)

\(\Leftrightarrow 5b^2+8b-4=0\Leftrightarrow (5b-2)(b+2)=0\)

\(\Rightarrow b=\frac{2}{5}\) (do \(b\geq 0)\)

\(\Rightarrow x+4=b^2=\frac{4}{25}\Rightarrow x=\frac{-96}{25}\) (t/m)

Vậy \(x\in \left\{ \frac{-96}{25}; 0\right\}\)

Phạm Minh Quang
22 tháng 10 2019 lúc 20:32

.

Khách vãng lai đã xóa
tran tuan nam
Xem chi tiết
Thanh Tâm
Xem chi tiết
Thắng Nguyễn
18 tháng 2 2017 lúc 23:27

\(pt\Leftrightarrow\left(5-2\sqrt{6}\right)^{\frac{x}{2}}+\left(5+2\sqrt{6}\right)^{\frac{x}{2}}=10\)

Thấy rằng \(5-2\sqrt{6}\) là nghịch đảo của \(5+2\sqrt{6}\), Vì vậy 

\(\left(5-2\sqrt{6}\right)^{\frac{x}{2}}\left(5+2\sqrt{6}\right)^{\frac{x}{2}}=1\)

Đặt \(\left(5-2\sqrt{6}\right)^{\frac{x}{2}}=t\) ta dc pt sau 

\(t+\frac{1}{t}=10\Rightarrow t^2-10t+1=0\Rightarrow t=5\pm2\sqrt{6}\)

Vì vậy \(t=5\pm2\sqrt{6}=\left(5-2\sqrt{6}\right)^{\pm1}=\left(5-2\sqrt{6}\right)^{\frac{x}{2}}\)

Suy ra \(\frac{x}{2}=\pm1\Rightarrow x=\pm2\) 

Kinder
Xem chi tiết
Big City Boy
Xem chi tiết