Cho (O) và A là điểm nằm bên ngoài đường tròn. Kẻ các tiếp tuyến AB;AC với đường tròn( B;C là tiếp điểm )
a) OA vuông góc BC
b) Vẽ đường kính CD. CM BD // AO
c) Tính độ dài các cạnh của tam giác ABC biết OB = 2cm;OC = 4cm
Cho (O) và A là điểm nằm bên ngoài đường tròn. Kẻ các tiếp tuyến AB ; AC với đường tròn (B, C là tiếp điểm) a) Chứng minh 4 điểm A, B, O, C cùng thuộc một đường tròn và OA ⊥ BC? b) Vẽ đường kính CD. Chứng minh: BD // AO? c) Tính độ dài các cạnh của tam giác ABC biết OB= 2cm ; OC= 4cm?
a: Xét tứ giác OBAC có \(\widehat{OBA}+\widehat{OCA}=90^0+90^0=180^0\)
nên OBAC là tứ giác nội tiếp
=>O,B,A,C cùng thuộc một đường tròn
Xét (O) có
AB,AC là tiếp tuyến
Do đó: AB=AC
=>A nằm trên đường trung trực của BC(1)
OB=OC
=>O nằm trên đường trung trực của BC(2)
Từ (1) và (2) suy ra OA là đường trung trực của BC
=>OA\(\perp\)BC (3)
b: Xét (O) có
ΔBCD nội tiếp
CD là đường kính
Do đó: ΔDBC vuông tại B
=>DB\(\perp\)BC(4)
Từ (3) và (4) suy ra DB//OA
c: Đề sai rồi bạn
Cho đường tròn (O;R) và điểm A nằm ngoài đường tròn. Qua A kẻ 2 tiếp tuyến AB, AC với đường tròn (B,C là các tiếp điểm)
a) Chứng minh: 4 điểm A,B,O,C cùng thuộc một đường tròn
b) Kẻ cát tuyến ADE nằm giữa AO và AB (D nằm giữa A và E), kẻ các tiếp tuyến tại D và E cắt nhau tại S. Nối BC cắt OA tại H. Chứng minh: R^2=OH.OA và 3 điểm S, B,C thẳng hàng
a: Xét tứ giác ABOC có \(\widehat{ABO}+\widehat{ACO}=90^0+90^0=180^0\)
nên ABOC là tứ giác nội tiếp
=>A,B,O,C cùng thuộc một đường tròn
b: Xét (O) có
AB,AC là các tiếp tuyến
Do đó: AB=AC
=>A nằm trên đường trung trực của BC(1)
Ta có: OB=OC
=>O nằm trên đường trung trực của BC(2)
Từ (1) và (2) suy ra AO là đường trung trực của BC
=>AO\(\perp\)BC tại trung điểm H của BC
Gọi K là giao điểm của OS và ED
Xét (O) có
SE,SD là các tiếp tuyến
Do đó: SE=SD
=>S nằm trên đường trung trực của ED(3)
Ta có: OE=OD
=>O nằm trên đường trung trực của ED(4)
Từ (3) và (4) suy ra SO là đường trung trực của ED
=>SO\(\perp\)ED tại trung điểm K của ED
Xét ΔOBA vuông tại B có BH là đường cao
nên \(OH\cdot OA=OB^2=R^2\left(5\right)\)
Xét ΔODS vuông tại D có DK là đường cao
nên \(OK\cdot OS=OD^2=R^2\left(6\right)\)
Từ (5) và (6) suy ra \(OH\cdot OA=OK\cdot OS\)
=>\(\dfrac{OH}{OK}=\dfrac{OS}{OA}\)
Xét ΔOHS và ΔOKA có
\(\dfrac{OH}{OK}=\dfrac{OS}{OA}\)
góc HOS chung
Do đó: ΔOHS đồng dạng với ΔOKA
=>\(\widehat{OHS}=\widehat{OKA}\)
=>\(\widehat{OHS}=90^0\)
=>HO\(\perp\)SH tại H
mà HO\(\perp\)BH tại H
và SH,BH có điểm chung là H
nên S,H,B thẳng hàng
mà H,B,C thẳng hàng
nên S,B,H,C thẳng hàng
=>S,B,C thẳng hàng
Cho 1 điểm M nằm bên ngoài đường tròn tâm (O) bán kính= 3 cm kẻ hai tiếp tuyến MN MB n p là hai tiếp điểm của đường tròn tâm (Ở) vẽ các tiếp tuyến của đường tròn tâm (O )sao cho đoạn AB = 3 cm với AB thuộc đường tròn tâm (O) A nằm giữa M và B. a,chứng minh tứ giác OPMN nội tiếp đường tròn b, gọi H là trung điểm của đường tròn OAB số sánh MON và MHN
cho đường tròn (O;R) A là điểm nằm bên ngoài đường tròn. Từ A kẻ 2 tiếp tuyến AB ,AC với đường tròn (O;R) (B và C là hai tiếp điểm)
a. Chứng minh tứ giác ABOC nội tiếp đường tròn
b. Kẻ cát tuyến AMN (M nằm giữa A và N). Chứng minh AB^2 = AM.AN
c. Gọi K là giao điểm của tia CM và AB. Chứng minh góc ABC = góc KMB
a: góc ABO+góc ACO=90+90=180 độ
=>ABOC nội tiếp
b: Xét ΔABM và ΔANB có
góc ABM=góc ANB
góc BAM chung
=>ΔABM đồng dạng với ΔANB
=>AB/AN=AM/AB
=>AB^2=AN*AM
Bài 2. Cho đường tròn (O; R) và điểm A nằm bên ngoài đường tròn. Kẻ các tiếp tuyến AB, AC với đường tròn (B, C là các tiếp điểm)
a. Chứng minh 4 điểm A, B, O, C cùng nằm trên một đường tròn.
b. Gọi E là giao điểm của BC và OA. Chứng minh OE.OA = 𝑅2
c. Trên cung nhỏ BC của đường tròn (O; R) lấy điểm K bất kì (K khác B, C). Tiếp tuyến tại K của đường tròn (O, R) cắt AB, AC theo thứ tự tại P, Q. Chứng minh tam giác APQ có chu vi không đổi khi K chuyển động trên cung nhỏ BC.
giúp mình với ạ mai mình nộp rồi, cảm ơn mn!
Cho đường tròn (O), điểm A nằm bên ngoài đường tròn. Kẻ các tiếp tuyến AB, AC với đường tròn (B, C là các tiếp điểm).
Chứng minh rằng OA vuông góc với BC.
Ta có: AB = AC (tính chất của hai tiếp tuyến cắt nhau). Nên ΔABC cân tại A.
Lại có AO là tia phân giác của góc A nên AO ⊥ BC. (trong tam giác cân, đường phân giác cũng là đường cao)
cho đường tròn tâm o bán kính và m là một điểm nằm bên ngoài đường tròn . từ m kẻ hai tiếp tuyến từ ma,mb với đường tròn r (o) (a b là các tiếp điểm gọi e là giao điểm của ab và om
cho đường tròn tâm o bán kính và m là một điểm nằm bên ngoài đường tròn . từ m kẻ hai tiếp tuyến từ ma,mb với đường tròn r (o) (a b là các tiếp điểm gọi e là giao điểm của ab và om
Từ một điểm A nằm bên ngoài đường tròn (O), kẻ các tiếp tuyến AB, AC với đường tròn (B, C là các tiếp điểm). Qua điểm M thuộc cung nhỏ BC, kẻ tiếp tuyến với đường tròn (O), nó cắt các tiếp tuyến AB và AC theo thứ tự ở D và E. Chứng minh rằng chu vi tam giác ADE bằng 2AB
Chứng minh AB=AC; DB=DM và EC=EM.
Chu vi ΔADE bằng
= AD + DM + ME + AE
= AD + DB + EC + AE
= AB + AC
= 2AB.
Ta có AB = AC; DB = DM;
EC = EM.
Chu vi Δ ADE:
AD +AE +DE = AD +DM + AE + EM
=AD + DB + AE + EC = AB + AC = 2AB
Từ một điểm A nằm bên ngoài đường tròn (O), kẻ các tiếp tuyến AB, AC với đường tròn (B, C là các tiếp điểm). Qua điểm M thuộc cung nhỏ BC, kẻ tiếp tuyến với đường tròn (O), nó cắt các tiếp tuyến AB và AC theo thứ tự ở D và E. Chứng minh rằng chu vi tam giác ADE bằng 2AB.
Theo tính chất hai tiếp tuyến cắt nhau ta có:
DM = DB, EM = EC, AB = AC
Chu vi ΔADE:
CΔADE = AD + DE + AE = AD + DM + ME + AE = AD + DB + EC + AE = AB + AC = 2AB (đpcm)