cho phân số tối giản a/b chứng minh b-a/b cũng tối giản
cho a/b là phân số tối giản. chứng minh rằng a-2b/b cũng là phân số tối giản
\(\frac{a-2b}{b}=\frac{a-b+b}{b}=\frac{a}{b}\)là phân số tối giản.
Thế thôi ! Bạn chỉ cần tách tử số là ra luôn !^^
Cho a/b là phân số tối giản. Chứng minh rằng a+3b/b cũng là phân số tối giản Ai giải đầy đủ mình tick cho
Cho phân số a/b là phân số tối giản.
Chứng minh rằng: a - 2b/a cũng là phân số tối giản.
chứng minh rằng
Nếu a/b là phân số tối giản thì a+b/b cũng là phân số tối giản
Vì \(\frac{a}{b}\)tối giản nên UCLN(a,b)=1
Gọi UCLN(a+b,b)=d
Ta có:\(\hept{\begin{cases}a+b⋮d\\b⋮d\end{cases}}\)\(\Rightarrow\left(a+b\right)-b⋮d\)\(\Rightarrow a⋮d\) mà \(b⋮d\) nên d\(\in\)ƯC(a,b)=1
Vậy \(\frac{a+b}{b}\) là phân số tối giản
Cho \(\frac{a}{b}\) là phân số tối giản. Chứng minh rawngg:\(\frac{a-2b}{b}\) cũng là phân số tối giản.
Cho phân số a/b tối giản. Chứng minh rằng phân số 2a+b/a(a+b) tối giản
cho phân số a/b tối giản chứng minh rằng a/b+a là phân số tối giản
Chứng minh rằng nếu phân số \(\frac{a}{b}\)là tối giản thì phân số \(\frac{a+b}{b}\)cũng tối giản.
Gọi d là ƯCLN (a,a+b) và d thuộc N*
=> a+b chia hết cho d ; b chia hết cho d
=> a chia hết cho d ; b chia hết cho d
Mà phân số a/b tối giản =>d = 1
=> ƯCLN(a,a+b)=1
=> Phân số a/a+b tối giản
Ta có
\(\dfrac{a+b}{b}=1+\dfrac{a}{b}=1\dfrac{a}{b}\)
Vì \(\dfrac{a}{b}\)là phân số tối giản nên \(1\dfrac{a}{b}\)là phân số tối giản
Vậy\(\dfrac{a+b}{b}\)là phân số tối giản
cho a/b là phân số tối giản chứng minh rằng a/a+b và a/a-b là phân số tối giản