Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Trương Cao Phong
Xem chi tiết
Đức Anh Gamer
Xem chi tiết
Tran Le Khanh Linh
31 tháng 7 2020 lúc 20:56

do a>0, b>0 nên 1=a+b+3ab\(\ge3\sqrt[3]{3\left(ab\right)^2}\Leftrightarrow\frac{1}{3}\ge\sqrt[3]{3\left(ab\right)^2}\)

\(\Leftrightarrow\frac{1}{27}\ge3\left(ab\right)^2\Leftrightarrow\frac{1}{81}\ge\left(ab\right)^2\Leftrightarrow\frac{1}{9}\ge ab\Leftrightarrow\frac{1}{3}\ge\sqrt{ab}\)do đó

P=\(\frac{6ab}{a+b}-a^2-b^2=\frac{6ab}{a+b}-\left(a^2+b^2\right)\le\frac{6ab}{2\sqrt{ab}}-2ab=-2ab+3\sqrt{ab}=-2\left(ab-\frac{3}{2}\sqrt{ab}\right)\)

\(=-2\left[ab-2\sqrt{ab}\cdot\frac{1}{3}+\left(\frac{1}{3}\right)^2-\left(\frac{1}{3}\right)^2-\frac{5}{6}\sqrt{ab}\right]\)

\(=-2\left(\sqrt{ab}-\frac{1}{3}\right)^2+\frac{2}{9}+\frac{5}{3}\sqrt{ab}\le\frac{2}{9}+\frac{5}{3}\cdot\frac{1}{3}=\frac{7}{9}\)

vậy maxP=\(\frac{7}{9}\Leftrightarrow\hept{\begin{cases}a=b>0\\a+b+3ab=1\end{cases}\Leftrightarrow a=b=\frac{1}{3}}\)

Khách vãng lai đã xóa
An Ann
Xem chi tiết
Nguyễn Đức Mạnh
18 tháng 9 2016 lúc 7:46

Ta có

a^3+b^3+3ab(a^2+b^2)+6ab(a+b)=a^3+b^3+3ab.a^2+3ab.b^2+6ab=a^3+b^3+3(a^2)b+3(b^2)a+3a(b-1)b^2+3b(a-1)a^2+6ab

                                               =(a+b)^3+3ab((b-1).b+(a-1).a)+6ab=(a+b)^3+3ab((1-b).(-b)+(1-a)(-a))+6ab=(a+b)^3+3ab(-2ab)+6ab

                                                                                                                                                        =(a+b)^3+(-6ab)ab+6ab

=>(a+b)^3+6ab(-ab-1)=6ab(-ab-1)+1 Vậy M=6ab(-ab-1)+1

k cho mình nhá

Nguyễn Long Vượng
Xem chi tiết
Đặng Ngọc Quỳnh
8 tháng 6 2021 lúc 14:09

Ta có: \(\left(a-b\right)^2\ge0\Leftrightarrow a^2-2ab+b^2\ge0\Leftrightarrow a^2+b^2\ge2ab\)

\(\Rightarrow\orbr{\begin{cases}a^2+2ab+b^2\ge4ab\\2\left(a^2+b^2\right)\ge a^2+2ab+b^2\end{cases}\Leftrightarrow\orbr{\begin{cases}a^2+2ab+b^2\ge4ab\\2\left(a^2+b^2\right)\ge a^2+2ab+b^2\end{cases}}}\)

\(\Leftrightarrow\orbr{\begin{cases}\left(a+b\right)^2\ge4ab\left(1\right)\\\left(a+b\right)^2\le2\left(a^2+b^2\right)\left(2\right)\end{cases}}\)

Theo đề bài:

\(a+b+3ab=1\)

\(\Leftrightarrow4\left(a+b\right)+12ab=4\)

\(\Leftrightarrow4\left(a+b\right)+3\left(a+b\right)^2\ge4\left(theo\left(1\right)\right)\)

\(\Leftrightarrow3\left(a+b\right)^2+4\left(a+b\right)-4\ge0\)

\(\Leftrightarrow\left(a+b+2\right)\left[3\left(a+b\right)-2\right]\ge0\)

\(\Leftrightarrow3\left(a+b\right)-2\ge0\left(a,b>0\Rightarrow a+b+2>0\right)\)

\(\Leftrightarrow a+b\ge\frac{2}{3}\)

`\(\Rightarrow2\left(a^2+b^2\right)\ge\left(a+b\right)^2\ge\frac{4}{9}\left(theo\left(2\right)\right)\)

Áp dụng các kết quả trên, ta có:

\(\left(\sqrt{1-a^2}+\sqrt{1-b^2}\right)^2\le2\left(1-a^2+1-b^2\right)\)\(=4-2\left(a^2+b^2\right)\le4-\frac{4}{9}=\frac{32}{9}\)

\(\Rightarrow\sqrt{1-a^2}+\sqrt{1-b^2}\le\frac{4\sqrt{2}}{3}\)

Ta có: \(\frac{3ab}{a+b}=\frac{1-\left(a+b\right)}{a+b}=\frac{1}{a+b}-1\le\frac{1}{\frac{2}{3}}-1=\frac{1}{2}\)

\(\Rightarrow A\le\frac{4\sqrt{2}}{3}+\frac{1}{2}\)

Dấu '=' xảy ra <=> \(\hept{\begin{cases}a=b\\a+b+3ab=1\end{cases}\Leftrightarrow\hept{\begin{cases}a=b\\3a^2+2a-1=0\end{cases}\Leftrightarrow}a=b=\frac{1}{3}\left(a,b>0\right)}\)

Vậy max A là \(\frac{4\sqrt{2}}{3}+\frac{1}{2}\Leftrightarrow a=b=\frac{1}{3}\)

Khách vãng lai đã xóa
Tsuyoshi Adell
Xem chi tiết
Hoàng Lê Bảo Ngọc
9 tháng 12 2016 lúc 11:54

\(ab+bc+ac=3abc\Rightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=3\)

Áp dụng BĐT Cauchy, ta có : \(a^2+1\ge2a\Rightarrow\frac{1}{a^2+1}\le\frac{1}{2a}\)

Tương tự : \(\frac{1}{b^2+1}\le\frac{1}{2b}\) ; \(\frac{1}{c^2+1}\le\frac{1}{2c}\)

Cộng theo vế được :

\(P=\frac{1}{a^2+1}+\frac{1}{b^2+1}+\frac{1}{c^2+1}\le\frac{1}{2a}+\frac{1}{2b}+\frac{1}{2c}=\frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)=\frac{3}{2}\)

Đẳng thức xảy ra khi a = b = c = 1

Vậy maxP = 3/2 tại a = b = c = 1

Nguyễn Thu Thủy
Xem chi tiết
SKY WARS
Xem chi tiết
Akai Haruma
1 tháng 6 2021 lúc 19:57

Lời giải:

$1=a+b+3ab\leq (a+b)+3.\frac{(a+b)^2}{4}$

$\Rightarrow a+b\geq \frac{2}{3}$

$\Rightarrow a^2+b^2\geq \frac{(a+b)^2}{2}=\frac{2}{9}$

\(p=\sqrt{1-a^2}+\sqrt{1-b^2}+\frac{1-(a+b)}{a+b}=\sqrt{1-a^2}+\sqrt{1-b^2}+\frac{1}{a+b}-1\)

\(\leq \sqrt{(1-a^2+1-b^2)(1+1)}+\frac{1}{\frac{2}{3}}-1=\sqrt{2(2-a^2-b^2)}+\frac{1}{2}\)

Mà \(2-a^2-b^2\leq 2-\frac{2}{9}=\frac{16}{9}\)

Do đó:

\(P\leq \sqrt{\frac{32}{9}}+\frac{1}{2}=\frac{3+8\sqrt{2}}{6}\) và đây chính là giá trị max.

 

Trần Mai Anh
Xem chi tiết
ngô thành hải
Xem chi tiết