tìm x biết : 3x.(x+1) + 5(x+1)=0
x2( x + 1 ) + 2x( x + 1 ) = 0 <=> x( x + 1 )( x + 2 ) = 0 <=> x = 0 hoặc x = -1 hoặc x = -2
x( 3x - 1 ) - 5( 1 - 3x ) = 0 <=> x( 3x - 1 ) + 5( 3x - 1 ) = 0 <=> ( 3x - 1 )( x + 5 ) = 0 <=> x = 1/3 hoặc x = -5
Trả lời:
1, \(x^2\left(x+1\right)+2x\left(x+1\right)=0\)
\(\Leftrightarrow x\left(x+1\right)\left(x+2\right)=0\)
\(\Leftrightarrow x=0;x=-1;x=-2\)
Vậy x = 0; x = - 1; x = - 2 là nghiệm của pt.
2, \(x\left(3x-1\right)-5\left(1-3x\right)=0\)
\(\Leftrightarrow x\left(3x-1\right)+5\left(3x-1\right)=0\)
\(\Leftrightarrow\left(3x-1\right)\left(x+5\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}3x-1=0\\x+5=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=\frac{1}{3}\\x=-5\end{cases}}}\)
Vậy x = 1/3; x = - 5 là nghiệm của pt.
tìm x biết: a) (x-1)^2 - (2x)^2 = 0; b) (3x-5)^2 - x(3x-5)=0
a,\(\left(x-1\right)^2-\left(2x\right)^2=0< =>\left(x-1-2x\right)\left(x-1+2x\right)=0\)
\(< =>\left(-x-1\right)\left(3x-1\right)=0< =>\orbr{\begin{cases}x=-1\\x=\frac{1}{3}\end{cases}}\)
b,\(\left(3x-5\right)^2-x\left(3x-5\right)=0< =>\left(3x-5\right)\left(3x-5-x\right)=0\)
\(< =>\orbr{\begin{cases}x=\frac{5}{3}\\x=\frac{5}{2}\end{cases}}\)
a, \(\left(x-1\right)^2-\left(2x\right)^2=0\Leftrightarrow\left(x-1-2x\right)\left(x-1+2x\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(3x-1\right)=0\Leftrightarrow x=-1;x=\frac{1}{3}\)
b, \(\left(3x-5\right)^2-x\left(3x-5\right)=0\)
\(\Leftrightarrow\left(3x-5\right)\left(3x-5-x\right)=0\Leftrightarrow\left(3x-5\right)\left(2x-5\right)=0\Leftrightarrow x=\frac{5}{3};x=\frac{5}{2}\)
Tìm x, biết :
3x^2 + 3x - 5(x+1) = 0
\(\Leftrightarrow\left(x+1\right)\left(3x-5\right)=0\)
hay \(x\in\left\{-1;\dfrac{5}{3}\right\}\)
Tìm x biết a) x.(x+5)=0 b)3x(x-1)=1-x
a) \(x\left(x+5\right)=0\Leftrightarrow\left[{}\begin{matrix}x=0\\x+5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-5\end{matrix}\right.\)
Vậy \(S=\left\{0;-5\right\}\).
b) \(3x\left(x-1\right)=1-x\)
\(\Leftrightarrow3x\left(x-1\right)-1+x=0\)
\(\Leftrightarrow3x^2-3x-1+x=0\)
\(\Leftrightarrow\left[{}\begin{matrix}3x-1=0\\x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{1}{3}\\x=1\end{matrix}\right.\)
Vậy \(S=\left\{-\dfrac{1}{3};1\right\}\).
tìm x biết : x^5-x^4+3x^3+3x^2-x+1=0
Tìm x biết (3x -5) x (2x- 1)- (x+ 2) x (6x- 1) = 0
=>6x^2-3x-10x+5-6x^2+x-12x+2=0
=>-24x+7=0
=>x=7/24
`(3x-5)(2x-1)-(x+2)(6x-1)=0`
`<=>(6x^2-3x-10x+5)-(6x^2-x+12x-2)=0`
`<=>6x^2-13x+5-6x^2-11x+2=0`
`<=>-24x+7=0`
`<=>-24x=-7`
`<=>x=7/24`
Vậy `S={7/24}`
Tìm x biết a) x(x-25)=0 b)2x(x-4)-x(2x-1)=-28 c)x^2 -5x=0 d)(x-2)^2-(x+1)(x+3)=-7 e)(3x+5).(4-3x)=0 f)x^2-1/4=0
a: \(x\in\left\{0;25\right\}\)
c: \(x\in\left\{0;5\right\}\)
Bài 2: Tìm x, biết: a) (x + 2)^2 – 2(x + 2)(x – 5) = 0. b) 2x^2 + 3x – 5 = 0. c) x + 2 ^2 x 2 + 2x^3 = 0. d) (3x-1)^2-4(x+5)^2=0
a: \(\Leftrightarrow\left(x+2\right)\left(x+2-2x+10\right)=0\)
\(\Leftrightarrow x\in\left\{-2;12\right\}\)
Bài 7. Tìm x,biết:
a) x-3x2=0 e) 5x(3x-1)+x(3x-1)-2(3x-1)=0
b) (x+3)2-x(x-2)=13 c) (x-4)2-36=0
d) x2-7x+12=0 g) x2-2018x-2019=0
Bài 8. Tìm x, biết
a) (2x-1)2=(x+5)2 b) x2-x+1/4
c) 4x4-101x2+25=0 d) x3-3x2+9x-91=0