cho tam giác ABC vuông tại A, đường cao AH, kẻ HM vuông góc với AC, I là trung điểm của HM, CI cắt AH, AB lần lượt tại E và K
CM: SAKE=\(\frac{1}{2}\)(SABM-SAME)
Cho tam giác ABC vuông tại A, đường cao AH. Từ H kẻ HM vuông góc với AC tại M. Gọi I là trung điểm của HM, đường thẳng CI cắt AH và AB lần lượt tại E và K. Chứng minh I là trung điểm của AB
cho tam giác ABC vuông tại A có AB=9cm,AC=12cm,đường cao AH a/ chứng minh tam giác ABC đồng dạng với tam giác HBA . Tính BC,AH. b/ kẻ HM vuông góc với AB tại M. chứng minh: HM^2=MA*MB c/ MC cắt AH tại I , đường thẳng qua I và song song với AC cắt AB,BC lần lượt tại E,F . CM: IF=IE
MỌI NGƯỜI GIÚP MÌNH VỚI Ạ!!!
a: Xét ΔABC vuông tại A và ΔHBA vuông tại H có
góc B chung
=>ΔABC đồng dạng với ΔHBA
\(BC=\sqrt{9^2+12^2}=15\left(cm\right)\)
AH=9*12/15=7,2cm
b: ΔHAB vuông tại H có HM vuông góc AB
nên MH^2=MA*MB
Câu 2: Cho tam giác nhọn ABC, các đường cao AE, BF cắt nhau tại H. Gọi M là trung điểm của BC, qua H kẻ đường thẳng vuông góc với HM, a cắt AB, AC lần lượt tại I và K. a, Chứng minh: tam giác ABC đồng dạng tam giác EFC b, Qua C kẻ đường thẳng b song song với IK cắt AH, AB lần lượt tại N và D. Chứng minh: CN=DN; IH=KH c, Gọi G là giao của CH và AB. Chứng minh: \(\frac{AH}{HE}+\frac{BH}{HF}+\frac{HC}{HG}>6\)
Cho tam giac ABC vuông tại A, kẻ đường cao AH gọi M,N lần lượt là trung điểm của AB và AC. CMR: HM vuông góc với HN.
Cho tam giác ABC vuông tại A có AB < AC, đường cao AH. Từ H kẻ HM vuông góc với AB ( M thuộc AB ). Kẻ HN vuông góc AC ( N thuộc AC ). Gọi E là trung điểm AC, Kẻ AI vuông góc với BE tại I. Cm góc EIC= góc BIH
cho tam giác ABC vuông ở A, AH là đường cao, kẻ HN vuông góc AB, HM vuông góc AC. Gọi O trung điểm MN. Từ A kẻ Ax vuông góc BO tại K và Ax cắt BC tại I. Cmr: I là trung điểm HC
Cho tam giác ABC vuông tại A (AB < AC) đường cao AH Từ H kẻ HM vuông góc AB HK vuông góc AC (M trên AB,K trên AC
a) chứng minh AH=MK
b)Gọi D và E lần lượt là các điểm đối xứng của H qua AB và A Chứng minh D đối xứng với E qua A
c) chứng minh BD// CE
a: Xét tứ giác AMHK có
góc AMH=góc AKH=góc KAM=90 độ
=>AMHK là hình chữ nhật
=>AH=MK
b: Xét ΔAHD có
AB vừa là đường cao, vừa là trung tuyến
nên ΔAHD cân tại A
=>AH=AD và AB là phân giác của góc HAD(1)
Xét ΔHEA có
AC vừa là đường cao, vừa là trung tuyến
nên ΔAHE cân tại A
=>AH=AE và AC là phân giác của góc HAE(2)
Từ (1), (2) suy ra góc DAE=2*90=180 độ
=>D,A,E thẳng hàng
mà AD=AE
nên A là trung điểm của DE
c: Xét ΔAHB và ΔADB có
AH=AD
góc HAB=góc DAB
AB chung
=>ΔAHB=ΔADB
=>góc ADB=90 dộ
=>BD vuông góc DE(3)
Xét ΔAHC và ΔAEC có
AH=AE
góc HAC=góc EAC
AC chung
=>ΔAHC=ΔAEC
=>goc AEC=90 độ
=>CE vuông góc ED(4)
Từ (3), (4) suy ra BD//CE
Cho tam giác ABC vuông tại A (AB>AC) có AH là đường cao. Kẻ HM vuông góc AB tại M, kẻ HN vuông góc AC tại N.
a) Chứng minh: tứ giác AMHN là hình chữ nhật.
b) Gọi K là chung điểm của BC, qua K kẻ đường vuông góc với BC cắt AC tại E. Gọi F là điểm đối xứng với E qua K. Chứng minh: tứ giác BECF là hình thoi.
a: Xét tứ giác AMHN có
\(\widehat{AMH}=\widehat{ANH}=\widehat{MAN}=90^0\)
Do đó: AMHN là hình chữ nhật
Cho tam giác ABC cân tại A, đường cao AH. Kẻ HM vuông góc AC tại M. Gọi I là trung điểm của HM Chứng minh AI vuông góc với BM.