Cho A = 1+1/2+1/3+...+1/2^10-1. Chứng tơ A<10
Please help me
CÂU 3: Cho A =1/2 + 1/2^2+1/2^3+.........+1/2^10
HÃY CHỨNG TỎ A+ 1/2^10 = 1
Cho A= 1/2+1/2^2+1/2^3+1/2^4+......+1/2^10
Chứng tỏ rằng A + 1/2^10 = 1
\(A=\dfrac{1}{2}+\dfrac{1}{2^2}+.......+\dfrac{1}{2^{10}}\)
\(\Leftrightarrow2A=1+\dfrac{1}{2}+\dfrac{1}{2^2}+....+\dfrac{1}{2^9}\)
\(\Leftrightarrow2A-A=\left(1+\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^9}\right)-\left(\dfrac{1}{2}+\dfrac{1}{2^2}+....+\dfrac{1}{2^{10}}\right)\)
\(\Leftrightarrow A=1-\dfrac{1}{2^{10}}\)
\(\Leftrightarrow A+\dfrac{1}{2^{10}}=1\left(đpcm\right)\)
Cho A = 1/2+1/2^2+1/2^3+1/2^4+......+1/2^10
Chứng tỏ rằng A + 1/2^10 = 1
\(2A=1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^9}\)
\(A=2A-A=1-\frac{1}{2^{10}}\Rightarrow A+\frac{1}{2^{10}}=1-\frac{1}{2^{10}}+\frac{1}{2^{10}}=1\)
\(A=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{10}}\)
\(2A=1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^9}\)
\(2A-A=\left(1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^9}\right)-\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{10}}\right)\)
\(A=1-\frac{1}{2^{10}}\)
\(A+\frac{1}{2^{10}}=1\)
Đáp án:
AD+BC
=ED-EA+EC-EB
=(ED+EC)-(EA+EB) (1)
Mà E là trung điểm của AB=> EA+EB=0
(1)=2EF (F là trung điểm DC)
cho tam giac ABC nội tiếp đường tròn (O) ba đường phân giác trong của các góc A,B,C kéo dài lần lượt cắt đường tròn ngoại tiếp tại A1,B1,C1.đường tròn nội tiếp (I) tiếp xúc với ba cạnh BC,AC,AB tại A2,B2,C2.
a) chứng minh rằng : véc tơ OI = véc tơ OA1 + véc tơ OB1 +véc tơ OC1
b) chứng minh đường thẳng OI chính là đường thẳng Ơ-le của tam giác A2B2C2.
Bổ đề: Nếu tam giác ABC có tâm đường tròn ngoại tiếp O và trực tâm H thì \(\vec{OH}=\vec{OA}+\vec{OB}+\vec{OC}\).
Chứng minh: Xét hiệu \(\vec{s}=\vec{OA}+\vec{OB}+\vec{OC}-\vec{OH}=\left(\vec{OA}+\vec{OB}\right)+\vec{HA}\), có phương vuông góc với BC, tương tư vector s có phương vuông góc với CA. vậy vector s vuông góc với hai phương khác nhau nên là vector không.
Bằng cách tính góc, ta có \(IA_1\perp B_1C_1,IB_1\perp A_1C_1\to\) I chính là trực tâm tam giác A1B1C1. Từ đó áp dụng bổ đề 1, cho ta ngay a)
b) Ta có \(\vec{OA_1}=\frac{R}{r}\vec{IA_2},\vec{OB_1}=\frac{R}{r}\vec{IB_2},\vec{OC_1}=\frac{R}{r}\vec{IC_2}\to\vec{OA_1}+\vec{OB_1}+\vec{OC_1}\)
\(=\frac{R}{r}\left(\vec{IA_2}+\vec{IB_2}+\vec{IC_2}\right)=3\frac{R}{r}\vec{IG'}\) trong đó G' là trọng tâm tam giác A2B2C2. Theo câu a, ta suy ra véc tơ OI bằng 3R/r lần véc tơ IG', do đó điểm O nằm trên đường thẳng IG'. Vì I là tâm đường tròn ngoại tiếp tam giác A2B2C2 và G' là trọng tâm nên IG' chính là đường thẳng Ơ-le của tam giác A2B2C2. Suy ra OI chính là đường thẳng Ơ le của tam giác A2B2C2
Cho A = \(\dfrac{1}{2}\) + \(\dfrac{1}{2^{2}}\)+ \(\dfrac{1}{2^{3}}\)+ \(\dfrac{1}{2^{4}}\) + ...+ \(\dfrac{1}{2^{10}}\)
Chứng tỏ rằng A + \(\dfrac{1}{2^{10}}\)= 1
\(A=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{2\cdot2}+\dfrac{1}{2\cdot2}-\dfrac{1}{2\cdot2\cdot2}+\dfrac{1}{2\cdot2\cdot2}-\dfrac{1}{2\cdot2\cdot2\cdot2}+.....+\dfrac{1}{2^{10}}\)
\(A=1-\dfrac{1}{2^{10}}\)
\(A+\dfrac{1}{2^{10}}=1-\dfrac{1}{2^{10}}+\dfrac{1}{2^{10}}=1\left(dpcm\right)\)
C1: Cho tam giác ABC để M, N, P thõa mãn:
Vec tơ MA = 2 MB
Vec tơ MB = 2/3 MC
Vec tơ MC =3/4 MA
a)Xác định M, N, P
b) Chứng minh M, N, P thẳng hàng
C2: Cho tam giác ABC, xác định điểm M thỏa mãn điều kiện:
Véc tơ MA + 3MB +2 MC = Véc tơ 0 và chứng minh mọi điểm O ta có Véc tơ OM = 1/6 Véc tơ OA + 1/2 Véc tơ OB + 1/3 Véc tơ OC.
MỌI NGƯỜI GIÚP EM VỚI Ạ< EM ĐANG CẦN GẤP TT
Cho A = 1/1 - 1/2 + 1/3 - 1/4 + ... + 1/9 - 1/10
B = ( 1/1 + 1/2 + 1/3 + ... + 1/10 ) - 2 ( 1/2 + 1/4 + ... + 1/10 )
1/ So sánh A và B
2/ Chứng minh: A = 1/6 + 1/7 + 1/8 +1/9 + 1/10
\(A=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{9}-\frac{1}{10}\)
\(A=\left(1+\frac{1}{3}+...+\frac{1}{9}\right)-\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{10}\right)\)
\(A=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{9}+\frac{1}{10}\right)-2.\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{10}\right)\)
\(A=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{9}+\frac{1}{10}\right)-\left(1+\frac{1}{2}+...+\frac{1}{5}\right)\)
\(A=\frac{1}{6}+\frac{1}{7}+\frac{1}{8}+...+\frac{1}{10}\)
\(B=\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{10}\right)-2.\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{10}\right)\)
\(B=\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{10}\right)-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{5}\right)\)
Vậy A = B và A = 1/6 + 1/7 + 1/8 + 1/9 + 1/10
1/ A= \(\left(\frac{1}{1.2}\right)+\left(\frac{1}{3.4}\right)+...+\left(\frac{1}{9.10}\right)\)
B=(1/1+1/2+1/3+...+1/10)- (1/1+1/2+...+1/5)
<=> B=1/6+1/7+1/8+1/9+1/10.
Cho A=1/2+1/22+1/23+...+1/210.Hãy chứng tỏ rằng A+1/210=1
A = \(\frac{1}{2}+\frac{1}{2^{^2}}+\frac{1}{2^3}+...+\frac{1}{2^{10}}\)
2\(\times\)A=\(\frac{2}{2}+\frac{2}{2^2}+\frac{2}{2^3}+...+\frac{2}{2^{10}}\)
2A - A=\(\left(1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^9}\right)\) -\(\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{10}}\right)\)
A= 1 - \(\frac{1}{2^{10}}\)
A= \(\frac{1023}{1024}\)
một số chỗ hơi tắt bạn thông cảm nha