Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Ngọc Phương Nhi
Xem chi tiết
LÊ THỊ NHƯ QUỲNH
27 tháng 10 2016 lúc 22:17

[ab(ab−2cd)+c2d2].[ab(ab−2)+2(ab+1)]=0[ab(ab−2cd)+c2d2].[ab(ab−2)+2(ab+1)]=0

⇔(ab−cd)2((ab)2+2)=0⇔ab=cd.⇔(ab−cd)2((ab)2+2)=0⇔ab=cd.

Le Thi Khanh Huyen
Xem chi tiết
Nguyen Ha
Xem chi tiết
Lưu Hiền
2 tháng 1 2017 lúc 15:59

tỉ lệ thức????

Hồ Thu Giang
Xem chi tiết
Trần Thị Loan
9 tháng 10 2015 lúc 12:26

 [ab(ab - 2cd) + c2d2].[ab(ab - 2) + 2(ab + 1)] = 0 

=>  ab(ab - 2cd) + c2d2 = 0 hoặc ab(ab - 2) + 2(ab + 1) = 0 

+)  ab(ab - 2cd) + c2d= 0  => (ab)2 - 2(ab).(cd) + (cd)2 = 0 => (ab)2 - (ab).(cd) - (ab).(cd) + (cd)2 = 0 

=> (ab - cd).(ab - cd) = 0 => (ab - cd)2 = 0 => ab - cd = 0 => ab = cd => \(\frac{a}{c}=\frac{d}{b}\) => a; b; c;d lập được thành 1 tỉ lệ thức

+) ab(ab - 2) + 2(ab + 1) = 0  => (ab)2 + 2 = 0  (Vô lí, vì (ab)2 + 2 > 0 với mọi a; b)

Vậy..................

Hoàng Phúc
Xem chi tiết
Ma Cà RồNg
1 tháng 1 2016 lúc 16:52

[ab(ab-2cd)+cd ] [ab(ab-2)+2(ab+1)=0<=>(a2b2-2abcd+c2d2)(a2b2-2ab+2ab+2)=0

<=>[(a2b2 - abcd)+(-abcd+c2d2)](a2b2+2)=0<=>ab(ab-cd)-cd(ab-cd)=0(vì a2b2 > 0)

<=>(ab-cd)2=0<=>ab=cd

Hoàng Phúc
1 tháng 1 2016 lúc 16:36

haiz,ko ai làm được ak?

Saruhiko Fushimi
1 tháng 1 2016 lúc 16:36

Hoàng Phúc cậu mà không làm được sao

Le Thi Khanh Huyen
Xem chi tiết
Hồ Thu Giang
20 tháng 10 2015 lúc 18:34

http://olm.vn/hoi-dap/question/228341.html    ở đây nè

Quyet Pham Van
Xem chi tiết
New_New
9 tháng 10 2016 lúc 22:06

<=>(a2b2-2abcd+c2d2)(a^2*b^2-2ab+2ab+2)=0

<=>(ab-cd)^2.(a^2*b^2+2)=0

<=>ab-cd=0            (vì a^2*b^2+2>0 với mọi a,b)

nên a/c=b/d

Phan Hải Đăng
Xem chi tiết
do phuong nam
28 tháng 11 2018 lúc 20:32

Ta có: 

\(\left[ab\left(ab-2cd\right)+c^2d^2\right]\left[ab\left(ab-2\right)+2\left(ab+1\right)\right]\)

\(=\left(a^2b^2-2abcd+c^2d^2\right)\cdot\left(a^2b^2-2ab+2ab+2\right)\)

=\(\left(ab-cd\right)^2\left(a^2b^2+2\right)=0\)

Vif \(a^2b^2+2>0\)nên \(ab-cd=0\Leftrightarrow ab=cd\)

Suy ra 4 tỉ lên thức:

\(\orbr{\begin{cases}\frac{a}{c}=\frac{d}{b}\\\frac{b}{c}=\frac{d}{a}\end{cases} và} \orbr{\begin{cases}\frac{a}{d}=\frac{c}{b}\\\frac{b}{d}=\frac{c}{a}\end{cases}}\)

Phan Hải Đăng
28 tháng 11 2018 lúc 20:36

Tỉ lên thức là gì vậy bạn?

do phuong nam
28 tháng 11 2018 lúc 20:37

Xin lỗi nha bạn mình đánh lộn, tỉ lệ thức đó bạn

Mèo Mờ
Xem chi tiết
Vũ Minh Tuấn
13 tháng 1 2020 lúc 18:06

\(\left[ab.\left(ab-2cd\right)+c^2d^2\right].\left[ab.\left(ab-2\right)+2.\left(ab+1\right)\right]=0\)

\(\Rightarrow\left(a^2b^2-2abcd+c^2d^2\right).\left(a^2b^2-2ab+2ab+2\right)=0\)

\(\Rightarrow\left(a^2b^2-abcd-abcd+c^2d^2\right).\left(a^2b^2+2\right)=0\)

\(\Rightarrow\left[\left(a^2b^2-abcd\right)-\left(abcd-c^2d^2\right)\right].\left(a^2b^2+2\right)=0\)

\(\Rightarrow\left[ab.\left(ab-cd\right)-cd.\left(ab-cd\right)\right].\left(a^2b^2+2\right)=0\)

\(\Rightarrow\left(ab-cd\right).\left(ab-cd\right).\left(a^2b^2+2\right)=0\)

\(\Rightarrow\left(ab-cd\right)^2.\left(a^2b^2+2\right)=0\)

\(a^2b^2+2>0\) \(\forall x.\)

\(\Rightarrow\left(ab-cd\right)^2=0\)

\(\Rightarrow ab-cd=0\)

\(\Rightarrow ab=0+cd\)

\(\Rightarrow ab=cd.\)

\(\Rightarrow\frac{a}{c}=\frac{d}{b}\left(đpcm\right).\)

Chúc bạn học tốt!

Khách vãng lai đã xóa