CMR: S=1/2√AB^2.AC^2 - (AB.AC)^2
(AB,AC có dấu vecto. Bạn nào giúp mình vs ạ)
cho tam giác ABC:
a) xác định các điểm D và E sao cho vecto AD= 2 vecto AB, vecto AE = \(\frac{-1}{2}\)vecto AC
b) Dựng các vecto sau : vecto AB + 2 vecto AC, 2 vecto AB - vecto AC
Mọi ng giúp mình câu b với ạ !
Cho tam giác ABC vuông tại A, đường cao AH (H thuộc BC. Cmr
1) AB^2= BH.BC, AC^2= CH.BC
2) AH^2=HB.HC
3) AB.AC = AH.BC
4) 1/AH^2 = 1/AB^2 = 1/AC^2
Giải giúp mình nhé
Trong tọa độ Oxy, Cho tam giác ABC với A(2:-3),B(4:7),C(-3:2) a) tìm tọa độ vecto AB, vecto AC, vecto BC b) tính tích vô hướng của vecto AB.BC và vecto AB.AC c) tính góc tạo bởi các vecto AB và AC, AB vad BC d) tính chu vi của tam giác ABC
\(a,\overrightarrow{AB}=\left(2;10\right)\)
\(\overrightarrow{AC}=\left(-5;5\right)\)
\(\overrightarrow{BC}=\left(-7;-5\right)\)
\(b,\) Thiếu dữ kiện
\(c,Cos\left(\overrightarrow{AB},\overrightarrow{AC}\right)=\dfrac{\left|2\left(-5\right)+10.5\right|}{\sqrt{2^2+10^2}.\sqrt{\left(-5\right)^2+5^2}}=\dfrac{2\sqrt{13}}{13}\)
\(\Rightarrow\left(\overrightarrow{AB},\overrightarrow{AC}\right)=56^o18'\)
\(Cos\left(\overrightarrow{AB},\overrightarrow{BC}\right)=\dfrac{\left|2\left(-7\right)+10\left(-5\right)\right|}{\sqrt{2^2+10^2}.\sqrt{\left(-7\right)^2+\left(-5\right)^2}}\)
\(\Rightarrow\left(\overrightarrow{AB},\overrightarrow{BC}\right)=43^o9'\)
1.cho 5 điểm A;B;C;D;E;F tìm các vectơ:
a) vecto U= vecto AB+ vecto DC+ vecto BD- vecto AC
b) vecto V=vecto AC+ vecto DE- vecto DC- vecto CE+ vecto CB
2)cho ngũ giác đều ABCDE tâm O CMR:
vecto OH + vecto OB + vecto OC + vecto OD = vecto 0
Giúp mik vs ạ!!
Cho a,b,c dương CMR:
bc/(a^2 + 2bc) + ac/(b^2+2ac) + ab/(c^2 + 2ab) <= 1
Giải trong ngày giúp vs ạ ( dấu <= là nhỏ hơn hoặc bằng ạ)
Đặt: \(A=\frac{bc}{a^2+2bc}+\frac{ac}{b^2+2ac}+\frac{ab}{c^2+2ab}\)
\(2A=\frac{2bc}{a^2+2bc}+\frac{2ac}{b^2+2ac}+\frac{2ab}{c^2+2ab}\)
\(3-2A=1-\frac{2bc}{a^2+2bc}+1-\frac{2ac}{b^2+2ac}+1-\frac{2ab}{c^2+2ab}\)
\(3-2A=\frac{a^2}{a^2+2bc}+\frac{b^2}{b^2+2ac}+\frac{c^2}{c^2+2ab}\ge\frac{\left(a+b+c\right)^2}{\left(a+b+c\right)^2}=1\)
\(\Rightarrow2A+1\le3\Rightarrow A\le1\left(đpcm\right)\)
\("="\Leftrightarrow a=b=c\)
Đặt \(A=\frac{bc}{a^2+2bc}+\frac{ac}{b^2+2ac}+\frac{ab}{c^2+2ab}\)
\(2A=\frac{2bc}{a^2+2bc}+\frac{2ac}{b^2+2ac}+\frac{2ab}{c^2+2ab}\)
\(3-2A=1-\frac{2bc}{a^2+2bc}+1-\frac{2ac}{b^2+2ac}+1-\frac{2ab}{c^2+2ab}\)
\(3-2A=\frac{a^2}{a^2+2bc}+\frac{b^2}{b^2+2ac}+\frac{c^2}{c^2+2ab}\ge\frac{\left(a+b+c\right)^2}{\left(a+b+c\right)^2}=1\)
\(\Rightarrow2A+1\le3\Rightarrow A\le1\left(đpcm\right)\)
Dấu = xảy ra \(\Rightarrow2A+1\le3\Rightarrow A\le1\left(đpcm\right)\)
cho mk sửa chỗ cuối \(\Leftrightarrow a=b=c\)
Cho TG ABC có Â =60 độ. CMR:
BC^2= AB^2+AC^2-AB.AC
Câu 1:Cho tam giác ABC, Gọi M là trung điểm của AB, D là trung điểm của BC, N là điểm thuộc AC sao cho vecto CN bằng 2 vecto NA . khi đó AK bằng=1/4 AB+2/3 AC làm chi tiết ra giúp mình nha
giải giùm mk 2 bài vs: 1/ cho tứ giác ABCD. CM: vecto MD-MC=AB-AC+BD
2/ cho 6 điểm A,B,C,D,E,F. CM: vecto AB+CD+FE=AE+CB+FD
mk đg cần gấp cho sáng mai giúp mk vs cảm ơn lun nhé
2: ta có: \(\overrightarrow{AB}+\overrightarrow{CD}+\overrightarrow{FE}=\overrightarrow{AE}+\overrightarrow{CB}+\overrightarrow{FD}\)
\(\Leftrightarrow\overrightarrow{AB}+\overrightarrow{FE}+\overrightarrow{EA}=\overrightarrow{CB}+\overrightarrow{FD}+\overrightarrow{DC}\)
\(\Leftrightarrow\overrightarrow{AB}+\overrightarrow{FA}=\overrightarrow{CB}+\overrightarrow{FC}\)
\(\Leftrightarrow\overrightarrow{AB}+\overrightarrow{BC}=\overrightarrow{FC}-\overrightarrow{FA}\)
\(\Leftrightarrow\overrightarrow{AC}=\overrightarrow{AC}\)(đúng)
Cho tam giác ABC gọi G là trọng tâm , M trung điển BC và D đối xứng vs B qua G . Đẳng thức nào sau đây đúng :
A. Vecto MD = 3/4 AC + 5/4 AB
b,vecto MD = 1/3 AC -2/3 AB
c. Vecto MD=1/6 AC -5/6 AB
d. Vecto MD= 1/2 AC + 5/2 AB