Bài 3 : ΔABC trung tuyến BM = 6 , CN = 9 và hợp với nhau một góc \(120^0\) . Tính các cạnh ΔABC ?
Cho ΔABC, 2 đường trung tuyến BM, CN cắt nhau tại G nhưng không vuông góc với nhau. Kẻ BI vuông góc với CN, CK vuông góc với BM.
CMR:
a) BI = CK
b) ΔAIK là tam giác cân
Cho ΔABC, 2 đường trung tuyến BM, CN cắt nhau tại G nhưng không vuông góc với nhau. Kẻ BI vuông góc với CN, CK vuông góc với BM. CMR:
a) BI = CK
b) ΔAIK là tam giác cân
Cho ΔABC, 2 đường trung tuyến BM, CN cắt nhau tại G nhưng không vuông góc với nhau. Kẻ BI vuông góc với CN, CK vuông góc với BM.
CMR:
a) BI = CK
b) ΔAIK là tam giác cân
Cho ΔABC, 2 đường trung tuyến BM, CN cắt nhau tại G nhưng không vuông góc với nhau. Kẻ BI vuông góc với CN, CK vuông góc với BM. CMR:
a) BI = CK
b) ΔAIK là tam giác cân
Cho ΔABC, 2 đường trung tuyến BM, CN cắt nhau tại G nhưng không vuông góc với nhau. Kẻ BI vuông góc với CN, CK vuông góc với BM.
CMR:
a) BI = CK
b) ΔAIK là tam giác cân
Bài 1:cho ΔABC Vuông ở C ,có góc B=60 độ , tia phân giác của góc BAC cắt BC ở E,kẻ vuông góc với AB .(K thuộc AB ) ,kẻ BD vuông góc với AE (D thuộc AE)
Chứng minh rằng :a)AK=KB b)AD =BC
bài 2 :cho ΔABC cân tại A và hai đường trung tuyến BM,CN cắt nhau tại K
a)chứng minh ΔBNC=ΔCMB
b)chứng minh ΔBKC cân tại K
c)chứng minh BC < 4.KM
bài 3 :cho ΔABC vuông tại A có BD là phân giác ,Kẻ DE vuông góc BC (E thuộc BC).Gọi F là giao điểm của AB và DE
Chứng minh rằng:
a)BD là trung trực của AE (BD vuông góc với AE)
b)DF=DC
c)AD<DC
d)AE // FC
*Làm và vẽ hình hộ mình với các bạn ơi.Mình đang rất vội (CẢM ƠN CÁC BẠN RẤT NHIỀU)*
Bài 2: Cho ΔABC cân tại A, các đường trung tuyến BM và CN cắt nhau tại G. Gọi D là điểm đối xứng với G qua M, E là điểm đối xứng với G qua N. Chứng minh BEDC là hình chữ nhật.
Xét tứ giác BCDE có
G là trung điểm của BD
G là trung điểm của CE
Do đó: BCDE là hình bình hành
mà \(\widehat{EBC}=90^0\)
nên BCDE là hình chữ nhật
Bài 5 Cho ΔABC cân tại A, hai trung tuyến BM, CN cắt nhau tại K. Chứng minh :
a) ΔBNC = ΔCMB
b) ΔBKC cân tại K
c) MN // BC
a) Xét ∆BNC và ∆CMB có:
ABC = ACB ( ∆ABC cân tại A )
BC là cạnh chung
BN = CM ( N,M là trung điểm AB,AC và AB=AC )
∆BNC = ∆CMB (c_g_c)
b) Xét ∆AMB và ∆ANC có:
BAC là góc chung
AN=AM ( giải thích như trên )
AB=AC ( ∆ABC cân tại A )
∆AMB = ∆ANC ( c g c )
Có ^ ABM = ACN
Mà ABC = ACB
KBC = KCB
∆KBC cân tại K c) Ta có:
N là trung điểm AB
M là trung điểm AC
MN là đường trung bình ∆ABC cân
MN // BC xong rùii đó
Cho ΔABC, trung tuyến AD. Gọi G là trọng tâm của ΔABC. Đường thẳng d qua G cắt các cạnh AB, AC lần lượt tại M, N.
C/m:
a) \(\dfrac{AB}{AM}\) + \(\dfrac{AC}{AN}\) = 3
b) \(\dfrac{BM}{AM}\) + \(\dfrac{CN}{AN}\) = 1