Cho a, b, c, d > 0 và a+b+c+d = 1
CMR: \(\frac{1}{ab}+\frac{1}{ac}+\frac{1}{ad}\ge36\)
cho tam giác ABC vuông tại A, tia phân giác của góc BAC cắt BC tại D . E,F là hình chiếu vuông góc của D trên AB và AC. Đặt AC=b, AB=c, BC=a, AD=d
a/tính chu vi và diện tích tứ giác AEDF theo d
b/CMR :\(\frac{\sqrt{2}}{d}=\frac{1}{b}+\frac{1}{c}\)
c/ CMR :\(\frac{1}{\sin\frac{A}{2}}+\frac{1}{\sin\frac{B}{2}}+\frac{1}{\sin\frac{C}{2}}>6\)
1.cho tam giác ABC vuong tại A có AD là duong phan giác góc A( D thuoc BC) biết AB= c,AC=b và AD=d
cm\(\frac{\sqrt{2}}{d}=\frac{1}{b}+\frac{1}{c}\)
2.Cho a,b,c là 3 số nguyên dương thỏa mãn a+b+c+ab+bc+ca=6abc
cmr:\(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\)>=3
cho a, b, c, d khác 0,c+d=1 và \(\frac{c}{a}+\frac{d}{b}=\frac{1}{ac+bd}\)
CMR a=b
Cho tam giác ABC vuông tại A (AB < AC), phân giác AD của BAC và phân giác ngoài AE (D,E ϵ BC). CMR:
a) \(\frac{1}{AB}+\frac{1}{AC}=\frac{\sqrt{2}}{AD}\)
b) \(\frac{1}{AB}-\frac{1}{AC}=\frac{\sqrt{2}}{AE}\)
a, Từ D kẻ \(DE\perp AB\), \(DF\perp AC\)
\(\Rightarrow\) Tứ giác AEDF là hình chữ nhật và có : \(\widehat{A}=\widehat{E}=\widehat{D}=\widehat{F}=90^o\)
Mà đường chéo AD là phân giác
\(\Rightarrow\) AEDF là hình vuông
\(\Rightarrow\) \(DE=DF=\frac{AD}{\sqrt{2}}\)
Ta có : DE//AC \(\Rightarrow\) \(\frac{DE}{AC}=\frac{BD}{BC}\)
DF//AB \(\Rightarrow\) \(\frac{DF}{AB}=\frac{DC}{BC}\)
\(\Rightarrow\) \(\frac{DF}{AB}+\frac{DE}{AC}=1\)
\(\Rightarrow DF.\left(\frac{1}{AB}+\frac{1}{AC}\right)=1\)
\(\Rightarrow\) \(\frac{1}{AB}+\frac{1}{AC}=\frac{\sqrt{2}}{AD}\)
cho tam giác ABC vuông tại A, gọi AC là b, AB là c, d là tia phân giác AD của tam giác vuông ABC. cmr \(\frac{\sqrt{2}}{d}=\frac{1}{b}+\frac{1}{c}\)
tich minh cho minh len thu 8 tren bang sep hang cai
Cho tam giác ABC vuông tại A có AB=c, AC=b, đường phân giác AD=d.
CMR \(\frac{1}{b}+\frac{1}{c}=\frac{\sqrt{2}}{d}\)
Giúp mình với!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
Mình cần rất gấp
a, Cho a,b>0 , CMR: \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)
b. Cho a,b,c,d > 0. CMR: \(\frac{a-d}{d+b}+\frac{d-b}{b+c}+\frac{b-c}{c+a}+\frac{c-a}{a+d}\ge0\)
a/ Biến đổi tương đương:
\(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\Leftrightarrow\frac{a+b}{ab}\ge\frac{4}{a+b}\)
\(\Leftrightarrow\left(a+b\right)^2\ge4ab\Leftrightarrow a^2+2ab+b^2\ge4ab\)
\(\Leftrightarrow a^2-2ab+b^2\ge0\Leftrightarrow\left(a-b\right)^2\ge0\) (luôn đúng)
Vậy BĐT được chứng minh
b/ \(VT=\frac{a-d}{b+d}+1+\frac{d-b}{b+c}+1+\frac{b-c}{a+c}+1+\frac{c-a}{a+d}+1-4\)
\(VT=\frac{a+b}{b+d}+\frac{c+d}{b+c}+\frac{a+b}{a+c}+\frac{c+d}{a+d}-4\)
\(VT=\left(a+b\right)\left(\frac{1}{b+d}+\frac{1}{a+c}\right)+\left(c+d\right)\left(\frac{1}{b+c}+\frac{1}{a+d}\right)-4\)
\(\Rightarrow VT\ge\left(a+b\right).\frac{4}{b+d+a+c}+\left(c+d\right).\frac{4}{b+c+a+d}-4\)
\(\Rightarrow VT\ge\frac{4}{\left(a+b+c+d\right)}\left(a+b+c+d\right)-4=4-4=0\) (đpcm)
Dấu "=" xảy ra khi \(a=b=c=d\)
cho a,b,c>0 và a+b+c=1
CMR
\(\frac{ab}{c+1}+\frac{bc}{a+1}+\frac{ac}{b+1}\ge\frac{1}{4}\)
Cho \(a,b,c,d\in[0;1]\)
CMR: \(\frac{a}{bc+cd+db+1}+\frac{b}{cd+da+ac+1}+\frac{c}{da+ab+bd+1}+\frac{d}{ab+bc+ca+1}\le\frac{3}{4}+\frac{1}{4abcd}\)