cho tam giác ABC vuông tại A, góc B = 60 độ. Lấy M là trung điểm của BC. Tính số đo các góc của tam giác Amc
Cho tam giác ABC vuông tại A có B= 60 độ. Vẽ AH vuông góc với BC tại H
a. tính số đo góc HAB
b.trên cạnh AC lấy điểm D sao cho AD = AH.gọi I là trung điểm của cạnh HD. chứng minh tam giác AHI = tam giác ADI
c. tia AI cắt HC tại điểm K. chứng minh: tam giác AHK= tam giác ADK từ đó suy ra AB song song KD.
d. trên tia đối của HA lấy điểm E sao cho HE = AH. CHỨNG MINH : H là trung điểm của BK và 3 điểm D,K,E thẳng hàng
giúp em câu d thôi , mấy câu kia e bt lm r
các acj giúp e vs
Cho tam giác ABC vuông tại A có B= 60 độ. Vẽ AH vuông góc với BC tại H
a. tính số đo góc HAB
b.trên cạnh AC lấy điểm D sao cho AD = AH.gọi I là trung điểm của cạnh HD. chứng minh tam giác AHI = tam giác ADI
c. tia AI cắt HC tại điểm K. chứng minh: tam giác AHK= tam giác ADK từ đó suy ra AB song song KD.
d. trên tia đối của HA lấy điểm E sao cho HE = AH. CHỨNG MINH : H là trung điểm của BK và 3 điểm D,K,E thẳng hàng
giúp em câu d thôi , mấy câu kia e bt lm r
các acj giúp e vs
cho tam giác ABC vuông tại A. Gọi M là trung điểm của AB. Trên tia đối của tia MC lấy điểm E sao cho MC=ME
a/chứng minh tam giác MAC= tam giác MBE
b/chứng minh AC//BE
c/giả sử cho góc AMC=52 độ. Tính số đo góc ACM
a: Xét ΔMAC và ΔMBE có
MA=MB
\(\widehat{AMC}=\widehat{BME}\)
MC=ME
Do đó: ΔMAC=ΔMBE
b: Xét tứ giác ACBE có
M là trung điểm của AB
M là trung điểm của CE
Do đó:ACBE là hình bình hành
Suy ra: AC//BE
c: \(\widehat{ACM}=90^0-52^0=38^0\)
a) Xét tam giác MAC và tam giác MBE:
+ MA = MB (M là trung điểm của AB).
+ MC = ME (gt).
+ \(\widehat{AMC}=\widehat{BME}\) (đối đỉnh).
\(\Rightarrow\) Tam giác MAC = Tam giác MBE (c - g - c).
b) Ta có: \(\widehat{MAC}=\widehat{MBE}\) (Tam giác MAC = Tam giác MBE).
Mà 2 góc ở vị trí so le trong.
\(\Rightarrow\) AC // BE (dhnb).
c) Tam giác AMC vuông tại A (\(\widehat{A} =\) \(90^o\)).
\(\Rightarrow\) \(\widehat{AMC}+\widehat{ACM}=\) \(90^o\).
Mà \(\widehat{AMC}=\) \(52^o\left(gt\right).\)
\(\Rightarrow\) \(\widehat{ACM}=\) \(38^o.\)
Cho tam giác ABC, góc ABC=60 độ, BC>AB, M là trung điểm cảu BC. Trên tia đối của tia MA lấy K sao cho MK=MA
a) C/m tam giác MAB=MKC
b) Vẽ AH vuông góc với BM tại H. Tính số đo góc HAB
c) Qua M vẽ đường thẳng d vuông góc với CK tại E, d cắt các đoạn thẳng AB, AH lần lượt tại D và O. Tính góc MOA
d) C/m tam giác MAD=MKE
Có thể hơi dài nhưng mong mn giúp mik với ạ, thanks <3
a: Xét ΔMAB và ΔMKC có
MA=MK
\(\widehat{AMB}=\widehat{KMC}\)
MB=MC
Do đó: ΔMAB=ΔMKC
Cho tam giác ABC vuông tại A, có đường cao AH, gọi M là trung điểm BC, có AH = 10 cm, BH = 5 cm.
a) Tính độ dài HC, AM.
b) Tính số đo góc HAM, góc AMC. (số đo góc làm tròn đến độ)
c) Gọi I là trung điểm AH, trên tia đối của tia IB lấy điểm E sao cho ME = MB, trên tia đối của tia IC lấy điểm F sao cho MF = MC. Gọi K là giao điểm của BF và CE. Chứng minh EF = 3/2.AH.Sin góc BKC
Câu 1 :Cho tam giác ABC có góc B-góc C =40 độ Đường trung trực của BC cắt AC ở I Tính số đo góc ABI
Câu 2 :Tam giác ABC có AB=6 BC=4 Qua trung điểm M của AC kẻ đường thẳng vuông góc với AC cắt A tại I Tính chu vi tam giác IBC Câu 3 :Cho góc xOy = 60 độ điểm A nằm trong góc đó Vẽ các điểm B và C sao cho Ox là đường trung trực của AB. Oy là đường trung trực của AC Tính các góc của tam giác OBC
Câu 1.
Gọi DI là trung trực BC
Xét ΔBIDvà ΔCID:
IDchung
\(\widehat{BDI}=\widehat{CDI}=90^o\)(ID trung trực BC)
BD = CD(như trên)
⇒ΔBID = ΔCID (c.g.c )
⇒ \(\widehat{IBD}=\widehat{C}\)(2gtu)
\(\widehat{B}-\widehat{C}\) = 40
hay \(\widehat{B}-\widehat{IBD}\) = 40
Mà\(\widehat{IBD}+\widehat{ABI}=B\)
\(\Rightarrow\widehat{ABI}=\widehat{B}-\widehat{IBD}=40^o\)
Cho tam giác ABC vuông tại A có, góc B= 60 độ và BC=2AB 1. Tính số đo góc C 2.Tia phân giác của góc B cắt cạnh AC tại điểm Đ. Trên đoạn thẳngBC lấy điểm H sao cho BH=BA. Chứng minh: tam giác ABD=tam giác HBD 3. Chứng minh DH là đường trung trực của BC
Bài 5: Cho tam giác ABC vuông cân tại A. Trên tia đối của tia BA lấy điểm D sao cho DB = BC. Tính số đo các góc của tam giác ACD
Bài6:TamgiácABCcântạiBcóBˆ =100 đôn.LấycácđiểmDvàEtrêncạnhAC sao cho AD = BA, CE = CB. Tính số đo góc DBE?
Bài 7: Cho tam giác ABC cân tại A. Vẽ BH vuông góc với AC tại H. Chứng minh rằng góc BAC có số đo gấp đôi số đo góc CBH.
Bài 8: Cho tam giác ABC cân tại A. Trên tia đối của tia BA lấy điểm D, trên tia đối của tia CA lấy điểm E sao cho BD = CE. Gọi I là giao điểm của BE và CD.
a) Chứng minh tam giác IBC và tam giác IDE là các tam giác cân.
b) Chứng minh BC // DE.
c) Gọi M là trung điểm của BC. Chứng minh ba điểm A, M, I thẳng hàng.
Bài 5:
Tgiac ABC vuông cân tại A => góc CBA = 45 độ
Xét góc CBA là góc ngoài tgiac DBC => góc CBA = góc D + DCB
Xét tgiac DBC có DB = BC => tgiac DBC cân tại B => góc D = góc DBC
=> góc D = 45/2 = 22,5 độ
và góc ACD = 22,5 + 45 = 67,5 độ
Vậy số đo các góc của tgiac ACD là ...
Bài 6:
Tgiac ABC cân tại B, góc B = 100 độ => góc A = góc C = 40 độ
Xét tgiac ABD có AB = AD => tgiac ABD cân tại A => góc EDB (ADB) = (180-40)/2 =70 độ
cmtt với tgiac CBE => góc DEB = 70 độ
=> góc DBE = 180-70-70 = 40 độ
Bài 7:
Xét tgiac ABC cân tại A => góc BAC = 180 - 2.góc C => 2.(90 - góc C)
Xét tgiac BHC vuông tại H => góc CBH = 90 - góc C
=> đpcm
Bài 8: mai làm hihi
bài này dễ sao không biết
Bài 8 :
Tự vẽ hình nhé ?
a) Vì ∆ABC cân tại A (GT)
=> ∠ABC = ∠ACB (ĐN)
Mà ∠ABC + ∠DBC = 180o (2 góc kề bù)
∠ACB + ∠ECB = 180o (2 góc kề bù)
=> ∠DBC = ∠ECB (1)
Xét ∆BCD và ∆CBE có :
BD = CE (GT)
∠DBC = ∠ECB (Theo (1))
BC chung
=> ∆BCD = ∆CBE (c.g.c) (2)
=> ∠BCD = ∠CBE (2 góc tương ứng)
Hay ∠BCI = ∠CBI
Xét ∆IBC có : ∠BCI = ∠CBI (cmt)
=> ∆IBC cân tại I (định lý)
=> IB = IC (ĐN) (3)
Từ (2) => DC = EB (2 cạnh tương ứng)
Mà ID + IC = DC, IE + IB = EB
=> ID = IE
Xét ∆IDE có : ID = IE (cmt)
=> ∆IDE cân tại I (ĐN)
b) Ta có : AB + BD = AD
Mà AC + CE = AE
AB = AC (GT)
BD = CE (GT)
=> AD = AE
Xét ∆ADE có : AD = AE (cmt)
=> ∆ADE cân tại A (ĐN)
=> ∠ADE = \(\frac{180^o-\widehat{DAE}}{2}\)(4)
Vì ∆ABC cân tại A (GT)
=> ∠ABC = \(\frac{180^o-\widehat{BAC}}{2}\)(5)
Từ (4), (5) => ∠ADE = ∠ABC, mà 2 góc này ở vị trí đồng vị
=> BC // DE (DHNB)
c) Xét ∆ABM và ∆ACM có :
AM chung
AB = AC (GT)
MB = MC (do M là trung điểm của BC)
=> ∆ABM = ∆ACM (c.c.c)
=> ∠AMB = ∠AMC (2 góc tương ứng)
Mà ∠AMB + ∠AMC = 180o (2 góc kề bù)
=> ∠AMB = ∠AMC = 180o : 2 = 90o
Sau đó chứng minh ∆BIM = ∆CIM theo c.c.c bằng 3 yếu tố MI chung, MB = MC, IB = IC (Theo (3))
Rồi => ∠IMB = ∠IMC (tương ứng)
Mà ∠IMB + ∠IMC = 180o (kề bù)
=> ..... (làm như phần trên)
Ta có : ∠AMB + ∠IMB = ∠AMI
Mà ∠AMB = 90o (cmt)
∠IMB = 90o (cmt)
=> 90o + 90o = ∠AMI
=> ∠AMI = 180o
=> A, M, I thẳng hàng (đpcm)
Vậy .....
Cho tam giác ABC vuông tại A, góc B=60 độ. Gọi M là trung điểm của cạnh BC, trên tia đối của tia AM lấy điểm D sao cho AM=MD
a) Chứng minh rằng: tam giác ABC= tam giác DCB
b) Chứng minh rằng: tam giác ABD là tam giác vuông
c) Tính số đo góc BMD
cho tam giác ABC cân tại A lấy M là trung điểm của BC cho AB=4 cm tính cạnh AC
b nếu cho góc B=60 độ thì tam giác ABC là tam giác gì giải thích
c, chứng minh tam giác AMB= tam giác AMC
chứng minh AM vuông góc BC
d, Kẻ MH vuông có AB , ( H thuộc AB) MK vuông góc AC ( k thuộc AC) . chứng minh MH = MK
mk ko biết xin lỗi bạn nha!!!
mk ko biết xin lỗi bạn nha!!!
mk ko biết xin lỗi bạn nha!!!
mk ko biết xin lỗi bạn nha!!!