Cho hcn ABCD có AB: x-y+1=0 và phương trình BD: 2x +y-1=0, đường thẳng AC đi qua M(-1;1). Tìm toạ độ các đỉnh ABCD
Cho HCN ABCD có S=6. Đường chéo BD có phương trình 2x+y-11=0, đường thẳng AB đi qua M(4;2), đường thẳng BC đi qua N(8;4). Viết phương trình các đường thẳng của HCN đó biết B, D đều có hoành độ lớn hơn 4.
Trong mặt phẳng tọa độ Oxy, cho hình chữ nhật ABCD có phương trình đường thẳng chứa các cạnh AB,AC lần lượt là 2x - y + 1 = 0 và x + y - 4 = 0. Phương trình đường thẳng AD là
Trong mặt phẳng tọa độ Oxy, cho hình chữ nhật ABCD có phương trình đường thẳng chứa các cạnh AB,AC lần lượt là 2x=y+1=0 và x+y-4=0 Phương trình đường thẳng AD là
A. x+2y+5=0
B. x-2y+5=0
C. x+2y-7=0
D. x-2y-7=0
Trong mặt phẳng tọa độ Oxy, cho hình chữ nhật ABCD có phương trình đường thẳng chứa các cạnh AB,AC lần lượt là
2x - y + 1 = 0 và x + y -4 = 0. Phương trình đường thẳng AD là
1. Trong mặt phẳng tọa độ Oxy, cho tam giác ABC có cạnh AC đi qua điểm M (0;-1). Biết AB =2AM, phương trình đường phân giác trong AD : x-y =0, phương trìn đường cao CH: 2x+y+3 =0. Tìm tọa độ các đỉnh A,B,C.
2. Trong mặt phẳng tọa độ Oxy, cho hình vuông ABCD tâm I (-1;1). Gọi M nằm trên cạnh CD sao cho MC =2 MD. Tìm tọa độ điểm C biết đường thẳng AM có phương trình 2x-y=0,điểm A có hoành độ dương
Cho tam giác ABC cân tại A có BC: 2x - 3y - 5 = 0, AB: x + y + 1 = 0, đường thẳng AC qua M(1;1). Viết phương trình cạnh AC
cho hcn ABCD biết pt cạnh AB :x-2y+1=0, pt đường chéo BD: x-7y+14=0, đường chéo AC đi qua M(2;1). tìm tọa độ các đỉnh hcn
cho hcn ABCD biết pt cạnh AB :x-2y+1=0, pt đường chéo BD: x-7y+14=0, đường chéo AC đi qua M(2;1). tìm tọa độ các đỉnh hcn
Tọa độ B là:
x-2y+1=0và x-7y+14=0
=>x=7 và y=3
AB: x-2y+1=0
=>BC: 2x+y+c=0
Thay x=7 và y=3 vào BC, ta được:
c+2*7+3=0
=>c=-17
=>2x+y-17=0
A thuộc AB nên A(2a+1;a); C thuộc BC nen C(c;17-2c)(a<>3; c<>7)
Gọi I là giao của AC và BD
Tọa độ I là;
\(\left\{{}\begin{matrix}x=\dfrac{2a+1+c}{2}\\y=\dfrac{a+17-2c}{2}\end{matrix}\right.\)
I thuộc BD nên 3c-a=18
=>a=3c-18
=>A(6c-35; 3c-18)
vecto MA=(6c-37; 3c-19)
vecto MC=(c-2;16-2c)
M,A,C thẳng hàng nên (6c-37)/(c-2)=(3c-19)/16-2c
=>c=7(loại) hoặc c=6(nhận)
=>A(1;0); C(6;5); B(7;3); D(0;2)
trong mặt phẳng hệ tọa độ Oxy cho tam giác ABC cân tại A . biết phương trình các đường thẳng AB,BC lần lượt là x-7y+14=0 và 2x+y-2=0. viết phương trình cạnh AC , biết đường thẳng AC đi qua M(4,0)
\(cosB=\dfrac{\left|1.2+\left(-7\right).1\right|}{\sqrt{1^2+\left(-7\right)^2}.\sqrt{2^2+1^2}}=\dfrac{1}{\sqrt{10}}\)
Gọi vtpt của AC có tọa độ \(\left(a;b\right)\)
\(\Rightarrow cosC=cosB=\dfrac{1}{\sqrt{10}}=\dfrac{\left|2a+b\right|}{\sqrt{a^2+b^2}.\sqrt{2^2+1^2}}=\dfrac{1}{\sqrt{10}}\)
\(\Leftrightarrow\sqrt{2}\left|2a+b\right|=\sqrt{a^2+b^2}\)
\(\Leftrightarrow2\left(2a+b\right)^2=a^2+b^2\)
\(\Leftrightarrow7a^2+8ab+b^2=0\Leftrightarrow\left(a+b\right)\left(7a+b\right)=0\)
Chọn \(a=1\Rightarrow\left[{}\begin{matrix}b=-1\\b=-7\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}\left(a;b\right)=\left(1;-1\right)\\\left(a;b\right)=\left(1;-7\right)\end{matrix}\right.\)
(Trường hợp \(\left(a;b\right)=\left(1-;7\right)\) loại do khi đó AC song song AB, vô lý)
\(\Rightarrow\) Phương trình AC: \(1\left(x-4\right)-1\left(y-0\right)=0\)