Xác định m để phương trình sau có nghiệm duy nhất.
\(\frac{x+2}{x-m}=\frac{x+1}{x-1}\)
xác định m đẻ phương trình sau có một nghiệm duy nhất
\(\frac{x+2}{x-m}=\frac{x+1}{x-1}\)
Định m để phương trình sau có nghiệm duy nhất:
\(\frac{x+2}{x-m}=\frac{x+1}{x-1}\)
\(ĐKXĐ:x\ne m;x\ne1\)
\(\frac{x+2}{x-m}=\frac{x+1}{x-1}\)
\(\Leftrightarrow\left(x+2\right)\left(x-1\right)=\left(x-m\right)\left(x+1\right)\)
\(\Leftrightarrow x^2+x-2=x^2-\left(m-1\right)x-m\)
\(\Leftrightarrow x-2=-\left(m-1\right)x-m\)
\(\Leftrightarrow x-2+\left(m-1\right)x+m=0\)
\(\Leftrightarrow mx+\left(m-2\right)=0\)
Đây là phương trình bậc nhất nên luôn có 1 nghiệm
Vậy pt có nghiệm duy nhất với mọi m.
Mọi người giúp em với, em xin cảm ơn rất nhiều ạ.
1, Cho phương trình sau :\(2m\left(x-3\right)+1=x-5\)
Tìm m để phương trình có 1 nghiệm duy nhất.
2, Tìm m để phương trình sau có nghiệm:
\(\frac{3}{x+m}-\frac{1}{x-2}=\frac{2}{x+2m}\)
Cho phương trình
\(\frac{4x^2}{x^4+2x^2+1}-\frac{2\left(2m-1\right)x}{x^2+1}+m^2-m-6=0\)
Xác định m để phương trình có ít nhất 1 nghiệm
Xác định giá trị của tham số m để hệ phương trình x − ( m − 2 ) y = 2 ( m − 1 ) x − 2 y = m − 5 có nghiệm duy nhất.
A. m ≠ 0
B. m ≠ 2
C. m ≠ {0; 3}
D. m = 0; m = 3
Xét hệ x − ( m − 2 ) y = 2 ( m − 1 ) x − 2 y = m − 5
⇔ ( m − 2 ) y = x − 2 2 y = ( m − 1 ) x − m + 5 ⇔ ( m − 2 ) y = x − 2 y = m − 1 2 x − m 2 + 5 2
TH1: Với m – 2 = 0 ⇔ m = 2 ta có hệ 0. y = x − 2 y = 1 2 x + 3 2 ⇔ x = 2 y = 1 2 x + 3 2
Nhận thấy hệ này có nghiệm duy nhất vì hai đường thẳng x = 2 và y = 1 2 x + 3 2 cắt nhau
TH2: Với m – 2 ≠ 0 ⇔ m ≠ 2 ta có hệ: ( m − 2 ) y = x − 2 y = m − 1 2 x − m 2 + 5 2 ⇔ y = 1 m − 2 x − 2 m − 2 y = m − 1 2 x − m 2 + 5 2
Để hệ phương trình đã cho có nghiệm duy nhất thì hai đường thẳng: d : y = 1 m − 2 x − 2 m − 2 và d ' : y = m − 1 2 x − m 2 + 5 2 cắt nhau
⇔ 1 m − 2 ≠ m − 1 2 ⇔ m – 1 m – 2 ≠ 2 ⇔ m 2 – 3 m + 2 ≠ 2 ⇔ m 2 – 3 m 0
Suy ra m ≠ {0; 2; 3}
Kết hợp cả TH1 và TH2 ta có m ≠ {0; 3}
Vậy hệ phương trình đã cho có nghiệm duy nhất khi m ≠ {0; 3}
Đáp án: C
Cho pt (m+3)\(x^2\)+(m-1)x+(m-1)(m+4)
a)định m để phương trình có nghiệm kép
b) định m để phương trình có 1 nghiệm duy nhất
a: Để phương trình có nghiệm kép thì
(m-1)^2-4(m-1)(m+1)(m+3)=0 và m+3<>0
=>(m-1)[m-1-4(m^2+4m+3)]=0 và m+3<>0
=>m=1 hoặc m-1-4m^2-16m-12=0
=>m=1 hoặc \(m=\dfrac{-15\pm\sqrt{17}}{8}\)
b: Để phương trình có nghiệm duy nhất thì
m+3=0 hoặc Δ=0
=>\(m\in\left\{1;-3;\dfrac{-15\pm\sqrt{17}}{8}\right\}\)
Cho phương trình m2x - 4x = 2m + 4 (*) ( với x là ẩn , m là tham số ) . Xác định m để phương trình (*) có nghiệm duy nhất là x= -1
Thay x=-1 vào (*), ta được:
\(-m^2+4=2m+4\)
\(\Leftrightarrow-m^2-2m=4-4\)
\(\Leftrightarrow-m\left(m+2\right)=0\)
\(\Leftrightarrow-m=0\)hoặc \(m+2=0\)
\(\Leftrightarrow m=0\)hoặc \(m=-2\)
Vậy khi m = 0, m = -2 thì (*) có nghiệm duy nhất là x = -1
Bài 3. Xác định m để hệ bất phương trình sau có nghiệm, vô nghiệm, có nghiệm duy nhất?a)\(\left\{{}\begin{matrix}x+m-1>0\\3m-2-x>0\end{matrix}\right.\) b)\(\left\{{}\begin{matrix}x-1>0\\mx-3>0\end{matrix}\right.\) c)\(\left\{{}\begin{matrix}x+4m^2\le2mx+1\\3x+2>2x-1\end{matrix}\right.\)
d)\(\left\{{}\begin{matrix}7x-2\ge-4x+19\\2x-3m+2< 0\end{matrix}\right.\) e)\(\left\{{}\begin{matrix}mx-1>0\\\left(3m-2\right)x-m>0\end{matrix}\right.\)
Cho phương trình ẩn x
\(\frac{x+2m}{x-5}-1=\frac{x+5}{2m-x}+1\)( m là tham số )
Tìm m để phương trình có nghiệm duy nhất
ĐKXĐ : \(x\ne5;2m\)
\(\frac{x+2m}{x-5}-1=\frac{x+5}{2m-x}+1\)
\(\Leftrightarrow\frac{x+2m-x+5}{x-5}=\frac{x+5+2m-x}{2m-x}\)
\(\Leftrightarrow\frac{2m+5}{x-5}=\frac{5+2m}{2m-x}\Leftrightarrow\frac{\left(2m+5\right)\left(2m-x\right)}{\left(x-5\right)\left(2m-x\right)}=\frac{\left(5+2m\right)\left(x-5\right)}{\left(x-5\right)\left(2m-x\right)}\)
\(\Leftrightarrow4m^2-2mx+10m-5x=5x-25+2mx-10m\)
\(\Leftrightarrow4m^2-4mx+20m-10x+25=0\)