Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Katory Amee
Xem chi tiết
Nguyễn Lê Phước Thịnh
24 tháng 4 2023 lúc 23:51

a: Xét ΔABD và ΔACE có

AB=AC

góc ABD=góc ACE

BD=CE
=>ΔABD=ΔACE
=>AD=AE
b: ΔABC cân tại A

mà AM là trung tuyến

nên AM vuông góc BC

ΔADE cântại A

mà AM vuông góc

nen AM là phân giác của góc DAE

c: Xét ΔAHB vuông tại H và ΔAKC vuông tại K có

AB=AC

góc HAB=góc KAC

=>ΔABH=ΔACK

=>BH=CK

d: Gọi O là giao của BH và CK

góc OBC=góc HBD

góc OCB=góc KCE
mà góc HBD=góc KCE

nên góc OBC=góc OCB

=>OB=OC

=>O nằm trên trung trực của BC

=>A,M,O thẳng hàng

Katory Amee
Xem chi tiết
Nguyễn Lê Phước Thịnh
24 tháng 4 2023 lúc 23:51

a: Xét ΔABD và ΔACE có

AB=AC

góc ABD=góc ACE

BD=CE
=>ΔABD=ΔACE
=>AD=AE
b: ΔABC cân tại A

mà AM là trung tuyến

nên AM vuông góc BC

ΔADE cântại A

mà AM vuông góc

nen AM là phân giác của góc DAE

c: Xét ΔAHB vuông tại H và ΔAKC vuông tại K có

AB=AC

góc HAB=góc KAC

=>ΔABH=ΔACK

=>BH=CK

d: Gọi O là giao của BH và CK

góc OBC=góc HBD

góc OCB=góc KCE
mà góc HBD=góc KCE

nên góc OBC=góc OCB

=>OB=OC

=>O nằm trên trung trực của BC

=>A,M,O thẳng hàng

Katory Amee
Xem chi tiết
Nguyễn Lê Phước Thịnh
24 tháng 4 2023 lúc 23:51

a: Xét ΔABD và ΔACE có

AB=AC

góc ABD=góc ACE

BD=CE
=>ΔABD=ΔACE
=>AD=AE
b: ΔABC cân tại A

mà AM là trung tuyến

nên AM vuông góc BC

ΔADE cântại A

mà AM vuông góc

nen AM là phân giác của góc DAE

c: Xét ΔAHB vuông tại H và ΔAKC vuông tại K có

AB=AC

góc HAB=góc KAC

=>ΔABH=ΔACK

=>BH=CK

Hữu Ngọc Ánh
Xem chi tiết
Nguyễn Lê Phước Thịnh
18 tháng 8 2022 lúc 23:58

a) Ta có: \(\widehat{ABD}+\widehat{ABC}=180^0\)(hai góc kề bù)

\(\widehat{ACE}+\widehat{ACB}=180^0\)(hai góc kề bù)

mà \(\widehat{ABC}=\widehat{ACB}\)(ΔABC cân tại A)

nên \(\widehat{ABD}=\widehat{ACE}\)

Xét ΔABD và ΔACE có 

AB=AC(ΔBAC cân tại A)

\(\widehat{ABD}=\widehat{ACE}\)(cmt)

BD=CE(gt)

Do đó: ΔABD=ΔACE(c-g-c)

Suy ra: AD=AE(Hai cạnh tương ứng)

Xét ΔADE có AD=AE(cmt)

nên ΔADE cân tại A(Định nghĩa tam giác cân)

tuan dat Nguyen
Xem chi tiết
Nguyễn Lê Phước Thịnh
18 tháng 8 2022 lúc 23:58

a) Ta có: \(\widehat{ABD}+\widehat{ABC}=180^0\)(hai góc kề bù)

\(\widehat{ACE}+\widehat{ACB}=180^0\)(hai góc kề bù)

mà \(\widehat{ABC}=\widehat{ACB}\)(ΔABC cân tại A)

nên \(\widehat{ABD}=\widehat{ACE}\)

Xét ΔABD và ΔACE có 

AB=AC(ΔBAC cân tại A)

\(\widehat{ABD}=\widehat{ACE}\)(cmt)

BD=CE(gt)

Do đó: ΔABD=ΔACE(c-g-c)

Suy ra: AD=AE(Hai cạnh tương ứng)

Xét ΔADE có AD=AE(cmt)

nên ΔADE cân tại A(Định nghĩa tam giác cân)

b: Ta có: ΔABC cân tại A

mà AM là đường trung tuyến

nên AM là đường cao

Ta có: ΔADE cân tại A

mà AM là đường cao

nên AM là phân giác của góc EAD

c: Xét ΔAHB vuông tại H và ΔAKC vuông tại K có

AB=AC

góc HAB=góc KAC

Do đó: ΔAHB=ΔAKC

Suy ra: BH=CK

d: Gọi giao điểm của BH và CK là O

Ta có: góc HDB=góc KEC

=>90 độ-góc HDB=90 độ-góc KEC

=>góc OBC=góc OCB

=>OB=OC

hay O nằm trên đường trung trực của BC

=>A,M,O thẳng hàng

=>AM,BH,CK đồng quy

Minh tú Trần
Xem chi tiết
ミ★Ƙαї★彡
19 tháng 7 2020 lúc 8:02

A B C D E M

a, Xét \(\Delta\)ABD và \(\Delta\)ACE ta có : 

AB = AC (do tam giác ABD cân đỉnh A)

BD = CE (GT)

\(\widehat{ABD}=\widehat{ACE}\left(GT\right)\)

=> \(\Delta\)ABD = \(\Delta\)ACE (c-g-c)

=> AD = AE (2 cạnh tương ứng)

=> \(\Delta\)ADE cân đỉnh A

b, Ta có : BD + BM = CE + CM <=> DM = EM 

Xét \(\Delta\)AMD và \(\Delta\)AME ta có 

AD = AE (cma)

AM chung 

DM = EM (cmt)

=> \(\Delta\)AMD = \(\Delta\)AME (c-c-c)

=> \(\widehat{MAD}=\widehat{MAE}\)( 2 góc tương ứng )

=> AM là p/g \(\widehat{DAE}\)

Ta có : \(\Delta AMD=\Delta AME\)

=> \(\widehat{AMD}=\widehat{AME}\)Mà \(\widehat{AMD}+\widehat{AME}=180^0\)

Vì \(\widehat{AMD}=\widehat{AME}\)Suy ra : \(\widehat{AMD}=\widehat{AME}=\frac{180^0}{2}=90^0\)

Vậy ta có đpcm 

Khách vãng lai đã xóa
Trang
19 tháng 7 2020 lúc 8:09

A B C D E M

a, Ta có:

     góc B + góc ABD = 180độ    ( vì ABD là góc ngoài của tam giác ABC tại B )

   góc C + góc ACE = 180độ     ( vì ACE là góc ngoài của tam giác ABC tại C )     

mà góc B = góc C   ( vì tam giác ABC cân tại A )

\(\Rightarrow\)         góc ABD = góc ACE

Xét tam giác ABD và tam giác ACE có

         AB = AC   

        góc ABD = góc ACE ( theo chứng minh trên )

        BD = CE   ( gt )

Do đó : tam giác ABD = tam giác ACE  (c.g.c)

\(\Rightarrow\)AD = AE  và góc D = góc E 

Vậy tam giác ADE là tam giác cân tại A

b,Vì M là trung điểm của BC nên 

 BM = CM

và BD = CE 

\(\Rightarrow\)BM + BD = CM + CE

\(\Rightarrow\)MD = ME

Xét tam giác AMD và tam giác AME có

        cạnh AM chung

        AD = AE ( theo câu a )

       MD = ME ( theo chứng minh trên )

Do đó : tam giác AMD = tam giác AME ( c.c.c )

\(\Rightarrow\)góc MAD = góc MAE 

Vậy AM là tia phân giác góc DAE

Học tốt !

Khách vãng lai đã xóa
Mai Trang
Xem chi tiết
Nguyen Nguyen Khoi
26 tháng 1 2015 lúc 2:20

a) Gọi H là trung điểm BC. Ta có AH vuông góc vs BC ( Tính chất đường trung tuyến trong tam giác cân )

BD = CE => HD = HE => AH cùng là trung tuyến trong tam giác ADE. AH vuông góc vs BC => ADE cân (Trung tuyến cũng là dg cao)

b) Câu b => M trung vs H. AM là phân giác cũng là tình chất tam giác cân. Còn nếu muốn cm cụ thể thì. 

Xét 2 tam giác ADM và tam giác AEM. Ta có AM là cạnh chung. MD = ME (M trung điểm DE). AE = AD Tam giác cân => 2 tam giác = nhau => DPCM

c) Xét 2 tam giác EKC và tam giác DHB vuông tại K  và H

Ta có: EC = DB

Góc E = góc D => 2 tam giác = nhau ( Cạnh huyền góc nhọn)

=> BH = CK 

 

nguyển thị kim anh
31 tháng 3 2016 lúc 21:57

Bạn nguyen khoi nguyen ơi, ở câu b thì cho m là trung diểm bc, ko phaj de đâu

Ben 10
1 tháng 8 2017 lúc 14:48

Câu 1
a/ có: AB = AC 
BD = CE 
=> AB / BD = AC / CE 
theo định lí đảo Thales ta suy ra: DE // BC (đpcm) 
b/ có: MBD và NCE là hai tgiác vuông có cạnh huyền bằng nhau là: 
BD = CE. 
mặt khác do tính chất góc đối đỉnh ta có: 
gócMBD = gócABC; gócNCE = gócACB 
mà gócABC = gócACB (ABC là tgiác cân) 
=> gócMBD = gócNCE 
=> tgiácMBD = tgiácNCE 
=> DM = EN (đpcm) 
c/ Gọi K là trung điểm BC, do ABC là tgiác cân nên AK vuông BC (đường trung tuyến cũng là đường cao) 
có BK = KC 
mà MB = NC (tgiác MBD = tgiác NCE) 
=> MB + BK = KC + CN 
=> MK = KN 
hiển nhiên AK vuông MN 
tgiác AMN có AK vừa đường cao vừa trung tuyến nên là tgiác cân.

ko biết đúng ko

quan leanh
Xem chi tiết
Nguyễn Lê Phước Thịnh
26 tháng 1 2022 lúc 20:09

a: Xét ΔABD và ΔACE có

AB=AC

\(\widehat{ABD}=\widehat{ACE}\)

BD=CE

Do đó: ΔABD=ΔACE

Suy ra: AD=AE

hay ΔADE cân tại A

b: Ta có: MB+BD=MD

MC+CE=ME

và MB=MC

và BD=CE

nên MD=ME

Ta có: ΔADE cân tại A

mà AM là đường trung tuyến

nên AM là đường phân giác và cũng là đường cao

c: Xét ΔAHB vuông tại H và ΔAKC vuông tại K có

AB=AC

\(\widehat{HAB}=\widehat{KAC}\)

Do đó: ΔAHB=ΔAKC

Suy ra: BH=CK

d: Xét ΔADE có 

AH/AD=AK/AE
Do đó: HK//DE

hay HK//BC

Suri
Xem chi tiết
hỏi đáp
28 tháng 3 2020 lúc 19:11

toán lớp 1 mà kinh z ? bọn trẻ lớn nhanh ghê !

A B C E D M H K N

e chịu khó gõ link này lên google nhé!

https://h.vn/hoi-dap/question/170176.html

Khách vãng lai đã xóa
Minh Dư Ngọc
28 tháng 3 2020 lúc 19:32

cái này là lớp 6 SURI chỉ chọn lớp 1 cho vui thôi

Khách vãng lai đã xóa
Huỳnh Quang Sang
28 tháng 3 2020 lúc 19:54

A A A B B B M M M D D D E E E H H H K K K C C C N N N

a) \(\Delta\)ABC cân ở A nên \(\widehat{ABC}=\widehat{ACB}\)mà \(\widehat{ABC}=\widehat{ABD}=90^0,\widehat{ACB}=\widehat{ACE}=90^0\)

=> \(\widehat{ABD}=\widehat{ACE}\)

AB = AC(hai cạnh bên của tam giác cân ABC)

BD = CE(gt)

=> \(\Delta ABD=\Delta ACE\left(c.g.c\right)\)

=> \(\widehat{ADB}=\widehat{AEC}\)

=> AD = AE

=> \(\Delta\)ADE cân ở A

b) Ta có BD = CE(gt)

BM = CM(vì M là trung điểm của BC)

=> BD + BM = CE + CM

=> DM = EM

Xét \(\Delta ADM\)và \(\Delta AEM\)có :

AD = AE(cmt)

DM = EM(cmt)

AM chung

=> \(\Delta\)ADM = \(\Delta\)AEM(c.c.c)

=> \(\widehat{DAM}=\widehat{EAM}\)(hai góc tương ứng)

=> AM là tia phân giác của góc DAE

Ta lại có : \(\Delta\)ADM = \(\Delta\)AEM(c.c.c) => \(\widehat{DAM}=\widehat{EAM}\)(cmt)

=> \(\widehat{DAM}+\widehat{EAM}=180^0\)

=> \(\widehat{DAM}=\widehat{EAM}=90^0\)

hay \(AM\perp DE\)

c) \(\Delta\)BHD và \(\Delta\)CKE có :

BD = CE (gt)

\(\widehat{HDB}=\widehat{KEC}\)(chứng minh trên)

=> \(\Delta\)BHD = \(\Delta\)CKE (ch - gn)

=> BH = CK

d) Xét \(\Delta\)AHB và \(\Delta\)AKC có :

AB = AC(gt)

BH = CK(cmt)

=> \(\Delta\)AHB = \(\Delta\)AHC(ch - cgv)

=> AH = AK

Vì AH = AK nên \(\Delta\)AHK cân ở A,do đó \(\widehat{AHK}=\frac{180^0-\widehat{A}}{2}\)(1)

Vì AD = AE nên \(\Delta\)ADE cân ở A,do đó \(\widehat{ADE}=\frac{180^0-\widehat{A}}{2}\)(2)

Từ (1) và (2) => \(\widehat{AHK}=\widehat{ADE}\)

Mà hai góc này ở vị trí đồng vị của hai đường thẳng DE và HK cắt đường thẳng AD,do đó HK //DE hay HK //BC

e) Xét \(\Delta\)AHN và \(\Delta\)AKN có :

AH = AK(gt)

AN chung

=> \(\Delta\)AHN = \(\Delta\)AKN(ch-cgv)

=> \(\widehat{HAN}=\widehat{KAN}\)

=> AN là phân giác \(\widehat{DAN}\)

Mà AM,AN đều là phân giác của \(\widehat{DAN}\)=> A,M,N thẳng hàng

Khách vãng lai đã xóa