Giair phương trình nghiệm nguyên dương: \(x+2y+2z=xyz\)
help me
1, giải phương tình nghiệm nguyên dương x^2y+x+y=xy^2z+yz+7z
2,giải phương trình nghiệm tự nhiên 2^x+3^y=z^2
3,giải phương trình nghiệm nguyên dương x^2+x+1=xyz-z
Tìm tất cả các nghiệm nguyên dương của phương trình: x^2 = xyz + 2z +2
tìm tất cả các nghiệm nguyên dương của phương trình x^2=xyz+2z+2.
giải giúp mik vs
tìm nghiệm nguyên dương của phương trình: xyz=x+2y+3z-5
giải phương trình nghiệm nguyên dương sau:
\(xyz=x^2-2z+2\)
Ta có:
\(xyz+2z=x^2+2\Leftrightarrow z=\frac{x^2+2}{xy+2}\)
Do \(z\ge1\Rightarrow x\ge y\)
Xét hiệu: \(xy+2-x+2=\left(x+1\right)\left(y-1\right)+3>0\Rightarrow xy+2>x-y\) (do \(y\ge1\))
Gọi d là ước chung lớn nhất của x và xy+2
\(\Rightarrow\hept{\begin{cases}xy+2⋮d\\x⋮d\end{cases}}\Rightarrow2⋮d\Rightarrow d\in\left\{1;2\right\}\)
Xét d=2. Đặt \(2\left(x-y\right)=k\left(xy+2\right)\) (k là số tự nhiên)
Do x,y là các số nguyên dương và xy+2>x-y nên 2>k
\(\Rightarrow k\in\left\{1;0\right\}\)
Xét k=1 thì \(2\left(x-y\right)=xy+2\Rightarrow\left(x+y\right)\left(2-y\right)=6\)
Do x+y>0 nên 2-y>0 => 0<y<2 =>y=1 =>x=5 thay vào pt đầu ta đk z=27/7 (ko t/m)
Xét k=0 thì:\(x-y=0\Rightarrow x=y\) thay vào pt đầu ta đk z=1 thay z lại tìm đk x=y=1
Xét d=1
Đặt x-y=k(xy+2) (k là số tự nhiên)
Do xy+2>x-y nên k<1 =>k=0
làm tương tự trên ta tìm đk x=y=z=1
KL
Ta có:
\(xyz=x^2-2z+2\)
+) Nếu z = 1 thì :
\(xy=x^2\Rightarrow x=y=k\left(k\inℕ^∗\right)\)
Ta có ( k , k ,1) là một nghiệm của pt
+) Xét \(z\ge2\)
Theo giả thiết ta có:
\(2z-2=x\left(x-yz\right)\Rightarrow\left(2z-2\right)⋮x\Rightarrow2z-2=tx\left(t\in N\right);t=x-yz\)
Laij có: \(t=x-yz\Rightarrow yz=x-t\Rightarrow y=\frac{x-t}{z}=\frac{2\left(x-t\right)}{tx+2}\)
\(\Rightarrow2\left(x-t\right)\ge tx+2\Leftrightarrow\left(2-t\right)x\ge2\left(t+1\right)>0\)( vì x >0)
\(\Rightarrow2-t>0\Rightarrow t=1\)
Khi đó: \(y=\frac{2\left(x-1\right)}{x+2}=2-\frac{6}{x+2}< 2\)
\(\Rightarrow y=1\Rightarrow x=4;z=3\)
Bn tự KL nhé
ak cái đoạn xét k =1 tui nhầm nhé phân tích nhầm phải là \(\left(x+2\right)\left(2-y\right)=6\) chứ không phải là \(\left(x+y\right)\left(2-y\right)=6\)
do x+2>0 nên 2-y>0 nên y<2 nên y=1 => x=4 từ đó tìm đk z=3 thỏa mãn
Tìm tất cả các nghiệm nguyên dương của phương trình: x2=xyz+2z+2
1. Tìm các nghiệm nguyên dương của phương trình: 3(xy+yz+zx) = 4xyz
2. Xác định tất cả các cặp (x;y) nguyên dương thỏa mãn phương trình: (x+1)^4 - (x-1)^4 = y^3
3. Tìm nghiệm nguyên dương của phương trình: x^2y + y^2z + z^2x = 3xyz
P/s: Tôi có bài giải rồi, ai có ý kiến khác tôi thì ý kiến nhé
Tui vừa trả lời 3 bài này ở câu của Nguyễn Anh Quân
Xem tui giải đúng không nha
Xin Wrecking Ball nhận xét
1...Chia cả hai vế cho xyz ta được
3xy/xyz + 3yz/xyz + 3zx/xyz = 4xyz/xyz
<=>3/x + 3/y + 3/z = 4
<=>1/x + 1/y + 1/z = 4/3
Vì x,y,z bình đẳng nên giả sử 0<x<=y<=z
+nếu x>=4=> y>=4;z>=4
=> 1/x + 1/y + 1/z <= 1/4 + 1/4 + 1/4 =3/4 < 4/3 => pt vô nghiệm
+nếu x=1 => 1+1/y+1/z=4/3
<=> 1/y+1/z=1/3
<=> 3(y+z)=yz
<=> 3y+3z-yz=0
<=> 3y-yz+3z-9=-9
<=> y(3-z)-3(3-z)=-9
<=> (3-z)(3-y)=9
Vì y,z nguyên dương nên (3-y),(3-z) nguyên dương
mà 9=3*3=1*9=9*1
==>3-z=3 và 3-y=3 => z=0 và y=0 (loại vì y,z nguyên dương)
+nếu x=2 => 1/2+1/y+1/z=4/3
<=> 1/y+1/z=5/6
<=> 6(y+z)=5yz
<=> 6y+6z-5yz=0
<=> 30y-25yz+30z-36=-36
<=> 5y(6-5z)-6(6-5z)=-36
<=> (5z-6)(5y-6)=36
Vì y,z nguyên dương nên (5y-6),(5z-6) nguyên dương
mà 36=6*6=2*18=18*2=3*12=12*3=4*9=9*4
Giải tương tự phần trên ta được
y=2,z=3 hoặc y=3,z=2
+nếu x=3 => 1/3+1/y+1/z=4/3
<=> 1/y+1/z=1
Giải tương tự phần trên ta được y=z=2
Vậy (x;y;z)=(2;2;3);(2;3;2);(3;2;2)
MK cop nhưng ủng hộ mk nha , mk có lòng trả lời
3. Tìm nghiệm nguyên dương của phương trình : \(\frac{x}{2x+y+z}+\frac{y}{2y+z+x}+\frac{z}{2z+x+y}=\frac{3}{4}\)
ko phải bài của mk nên bn ko tick cx đc,mk chỉ đăng lên để giúp bn thôi
tìm nghiệm nguyên dương của phương trình : x+y+z=xyz